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} Introduction to basic aspects of brain computation 

} Introduction to neurophysiology 

} Neural modeling: 

} Elements of neuronal dynamics 

} Elementary neuron models 

} Neuronal Coding 

} Biologically detailed models:  
                                                   the Hodgkin-Huxley Model 

} Spiking neuron models, spiking neural networks 

} Izhikevich Model 

} Introduction to Reservoir Computing and Liquid State Machines 

} Introduction to glia and astrocyte cells, the role of astrocytes in a 
computational brain, modeling neuron-astrocyte interaction, neuron-
astrocyte networks,  

} The role of computational neuroscience in neuro-biology and robotics 
applications. 
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Conductance-based Neuron Models 



Reversal Potential (Repetita) 

}The reversal potential of an ion is its Nernst potential 

 

 

} If ɝό  Ὁ ᵼ ions flow into the cell 

} If ɝό  Ὁ ᵼ ions flow out of the cell 
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} Ion channels: try to equilibrate 
the concentration of ions, i.e. try 
to meet the reversal potential 

} Ion pumps: active pumps that 
balance the flow of ions 

 



Equivalent Circuit (Repetita) 

}9ƭŜŎǘǊƛŎŀƭ ǇǊƻǇŜǊǘƛŜǎ ƻŦ ƴŜǳǊƻƴǎΩ ƳŜƳōǊŀƴŜǎ ŘŜǇƛŎǘŜŘ ƛƴ ǘŜǊƳǎ 
of the electrical circuit 
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} Membrane: capacitor 

} LƻƴǎΩ ŎƘŀƴƴŜƭǎ: resistors + battery 
(reversal potentials) 
 



Equivalent Circuit 
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} Membrane: capacitor 

} LƻƴǎΩ ŎƘŀƴƴŜƭǎ: resistors + battery 
(reversal potentials) 
 

inward current 

outward current 
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} Membrane: capacitor 

} LƻƴǎΩ ŎƘŀƴƴŜƭǎ: resistors + battery 
(reversal potentials) 
 

inward current 

outward current 

?? 



Equivalent Circuit 
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} Membrane: capacitor 

} LƻƴǎΩ ŎƘŀƴƴŜƭǎ: resistors + battery 
(reversal potentials) 

} Applied current Ὅ 
 

¦ǎƛƴƎ YƛǊŎƘƘƻŦŦΩǎ /ǳǊǊŜƴǘ [ŀǿ όY/[ύΥ 
 



Conductances 
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Ion channels: 

} Large transmembrane proteins with aqueous pores 

} Electrical conductance of individual channels is controlled by gates 
(gating particles) 

} Gates  can change the state of the channel: open/closed 

} Gates can be sensitive to the membrane potential (voltage-dependent 
conductances)Σ ƛƴǘǊŀŎŜƭƭǳƭŀǊ ŀƎŜƴǘǎΣ ƴŜǳǊƻǘǊŀƴǎƳƛǘǘŜǊǎΣ ΧΦ 
 

non-Ohmic currents 
(conductances are not constant) 



Persistent Conductances 

} a voltage sensor is connected to a 
swinging (activation) gate that can 
open or close the pore 

} gate opening: activation of the 
conductance 

} gate closing: de-activation of the 
conductance 

} results in a persistent (or non-
inactivating) conductance 

} Probability of the channel to be 
opened: ὴ ὲ  
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gating variable: the probability that  
one of the k sub-units of the gate is 
opened 

Voltage dependency: 

depolarization of the membrane 
leads to increasing ὲ 



Transient Conductances 

} Two gates regulates the channel:  
1 activation gate & 1 inactivation gate 

} The activation gate is opened with 
probability ά  

} The inactivation gate (the ball) does 
not block the channel with probability 
Ὤ 

} The channel is opened with probability 
ά Ὤ 

} The channel opens transiently while 
the membrane is depolarized 
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Voltage dependency: 

Depolarization: increasing ά, decreasing Ὤ 

Hyper-polarization: decreasing ά, increasing Ὤ 
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The Hodgkin-Huxley Model 



The Hodgkin-Huxley Model 

}One of the most important models in Computational 
Neuroscience 

}Based on studies by Hodgkin and Huxley (in the 50s) on 
the squid axon 

}The squid axon has 3 major currents: 

}Voltage-gated persistent K+ current with 4 activation gates 

}Voltage-gated transient Na+ current with 3 activation gates and 
1 inactivation gate 

}Ohmic leak current (all the other ions) 
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Hodgkin-Huxley Model 
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leak current 



Hodgkin-Huxley Model 
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leak current 

} άȟὲȟὬ - gating variables 

} ɻ, ɼ ς empirical functions 
            adjusted by Hodgkin and Huxley 

 



Hodgkin-Huxley Model 
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The  equations for the gating variables can be rewritten as 

where: 

} ὲ ὸȟά ὸ, Ὤ ὸ 
asymptotic values 

} ʐ ὸȟʐ ὸ, ʐ ὸ 
time constants 



Hodgkin-Huxley Model ς Dynamics 
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} Sodium (Na+) ς inward current: 

} Activation increases for increasing membrane potential 

} Inactivation increases for increasing membrane potential 

} BUT: activation is faster than inactivation (transient current) 

} Potassium (K+) ς outward current: 

} Activation increases for increasing membrane potential 

} BUT: activation is relatively slow (slower than activation of Na+) 

n Ҧ K+         m, h Ҧ Na+  

 

asymptotic values time constants 



Hodgkin-Huxley Model ς Spike Generation 
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} An external input (e.g. an EPSP) leads to a depolarization (u increases) 

} Conductance of Na+ increases rapidly, Na+ ions flow in the cell and ό increases even further 

} If the feedback is strong enough the action potential is initiated 

} At high values of depolarization, the Na+ current is stopped by the inactivation gate (Ὤ ҦлύΣ 
conductance of K+ increases and K+ ions flow outside the cell 

} The membrane is re-polarized, with a negative overshoot (refractoriness)  

 

} Threshold behavior: if the stimulating input is below a certain amplitude the action potential 
is not initiated and the membrane is re-polarized 

 



The Hodgkin-Huxley Model - Summary 
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} Conductance-based neuron model 

} Processes that regulate the voltage-dependent K+ and Na+ conductances well described 

} Biophysical mechanisms responsible for action potentials explicitly included in the 
mathematical model 

} Accurate biological realism, BUT slow and difficult to analyze. 
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Formal Spiking Neuron Models 



Phenomenological Spiking Neuron 

}Neuron models can be simplified and simulations can be 
accelerated if the biophysical mechanisms of spike-
generation are not included explicitly in the model 

}Formal threshold models of neuronal firing: 

}Spikes are stereotyped events that occur when the membrane 
potential crosses the threshold from below 

 

 

 

}Spikes are fully characterized by their firing time 

}Model only the sub-threshold dynamics 
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What does a neuron do? 
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Voltage 

Time 

Input 

Voltage 

Simplest Idea: an Integrator 

 



Integrate-and-Fire Model 

}The most simple case: all membrane conductances are 
ignored 

}The corresponding equivalent (simplified) circuit only 
contains a capacitor 
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} From the definition of the capacity: 

} KCL: 

} Spikes are formal events characterized by the firing time 

 

} After the spike the potential is reset to ό 

 

} Absolute refractory period: after the spike, the integration 
is suspended for  

 



Integrate-and-Fire Model 

} Equations 

 

 

 

 
 

} Suppose a constant input current Ὅis applied (e.g. an EPSP), and the last 

spike occurred at time ὸ : 
 
the time course of the membrane potential can be obtained by integration 

in the time interval ὸ ; ὸ  
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ό is often set to 0 



Leaky Integrate-and-Fire Model 

}The entire membrane conductance is modeled as a single 
leakage term 

}Assumption: the conductances are all constant 
(true for small fluctuations around the resting membrane 
potential) 

}Corresponding equivalent circuit: a capacitor in parallel 
with a resistor 
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Leaky Integrate-and-Fire Model 

}The entire membrane conductance is modeled as a single 
leakage term 

}Assumption: the conductances are all constant 
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hƘƳΩǎ [ŀǿ Ҍ YƛǊŎƘƘƻŦŦΩǎ ±ƻƭǘŀƎŜ [ŀǿΥ 

KCL: 

membrane 
time constant 



Leaky Integrate-and-Fire Model 

}Time course of the membrane potential? 

}Suppose a constant input current Ὅis applied and the 

last spike occurred at time ὸ   

}όὸ??? 
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First-Order linear differential equation (with initial condition όὸ  ό π) 



First-Order Linear Differential Equation 

32 

solution: 

where: 

Also useful to remember: 

    Ὡ Ὢ ὸὨὸ Ὡ ὧ 



Euler Method 
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By discretizing the temporal variable ὸ: Ὤ = dimension of the 
interval 

Numerical (approximate) method for solving ODEs 

The evolution of the system can be approximated by 



Leaky Integrate-and-Fire Model 

}Time course of the membrane potential? 

}Suppose a constant input current Ὅis applied and the 

last spike occurred at time ὸ   

}όὸ??? 
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First-Order linear differential equation (with initial condition όὸ  ό π) 

(The membrane potential asymptotically approaches ὙὍ) 



Leaky Integrate-and-Fire Model 

}When will next spike occur? 

 

35 

Firing rate (with refractory period) 

without refractoriness 

with refractoriness 
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Izhikevich Model 



Simple Spiking Models 

}Modeling the dynamics of excitable neurons 

}Fast activation of Na+ channels 

}Slow inactivation of Na+/activation of K+ 

}Dynamical system with 2 variables 

}One variable for the fast voltage increase 

}One recovery variable for slow voltage decrease 

}In many cases the sub-threshold dynamics leading to the 
action potential are more important than the shape of the 
action potential itself 

37 



Neuron Models ς Biological Plausibility vs Cost 
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Izhikevich Model 

}Two dimensional system of ordinary differential equations 
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} ό is the membrane potential, 

}  ὶ is a recovery variable 
(Na+ inactivation/K+ activation) 
provides negative feedback to ό 

} ὥȟὦȟὧȟὨ are the parameters of the 
model 

} Ὅ is the applied current 

If όὸ  σπ mV 



Izhikevich Model 

}Two dimensional system of ordinary differential equations 
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If όὸ  σπ mV 

Often in literature: 

} v is the membrane potential 

} u is the recovery variable 



Neuronal Dynamics 

}The behavior of a neuron does not depends only on its 
electrophysiological properties 

}Two neurons with the same electrophysiological 
properties can respond differently to the same input 

}Neurons can be thought as dynamical systems 

}Dynamical properties of the neurons have a major role 
Especially bifurcation dynamics 

41 

A bifurcation occurs when a small 
change to the parameter values of 
a system results in a sudden 
qualitative change in its behavior 



Neuronal Dynamics 

}Neurons are excitable because they are near a transition 
(bifurcation) between resting and sustained spiking activity 
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The system is excitable because its equilibrium is near a bifurcation 



Neuronal Dynamics 

}Four generic bifurcations 
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} Monostable: the neuron does not 
exhibits the presence of resting and 
tonic spiking 

} Resonator: there exist small amplitude 
oscillations of membrane potential 



Neuronal Dynamics 

}Integrators vs Resonators 

44 



Firing Patterns 
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}The most fundamental classes of firing patterns are just 6 


