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Neuroscience modeling

}Introduction to basic aspects of brain computation
+Introduction to neurophysiology
} Neural modeling:

Elements of neuronal dynamics

Elementary neuron models

Neuronal Coding

Biologically detailed models:
the HodgkirHuxley Model

Spiking neuron models, spiking neural networks
|zhikevichModel
+Introduction to Reservoir Computing and Liquid State Machines

+ Introduction to glia and astrocyte cells, the role of astrocytes in a
computational brain, modeling neurastrocyte interaction, neuren
astrocyte networks,

+ The role of computational neuroscience in nebr@ogy and robotics
applications.
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Conductancdased Neuron Models




Reversal PotentiaRepetitg

} Thereversal potentiadf an ion is its Nernst potential

yIf3x0 O
1 If3x0 O
/—/ Qutside
Na™ (145 mM)
K™ (5 mM)

whet €17 (110 mM)

© Ca?(2.5-5 mM)
Inside AT (25mM)
Na* (5-15 mM)
K* (140 mM)
Cl™ (4 mM)

CaZ (0.1 uM)
A (147 mM)
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- Passive
Redistribution

n —_—
dlion] Nin

E [ion] —

lons flow into the cell

lons flow out of the cell

Equilibrium Potentials EK < ECl < Urest < EN(L < EOG

Na™ 62 log lj—s = 90 mV —65mV
62 log% = 61 mV

Kt 62z —-0mv ) lon channels try to equilibrate
O —62log 10 — _89 mV the concentrationof ions,i.e. try

Cat* 31log 25 — 136 mV to meetthe reversapotential

3l = 16mV. 1 Jon pumps active pumps that
balancethe flow of ions




EquivalentCircuit Repetitg
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outside
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Equivalent Circuit

outside

o} \LI
Py LTI.:a ™ ylm lCd 1 Membrane capacitor
Fa, T Fun Feo——¢ ) L2y a0 :Gesistofsy batery
L. L. L. (reversal potentiajs
i e S } Applied currentO

inside

INa = gNa(u— Ena) Ik = gx(u—Ex)  Ica=gca(u—Eca) Ioi=goi(u— Ec)) C%

f /
'AAY3 YANDKK2FTFQa [/ dINNBYda:-1f |
C% =1 —1Ing—Ica —Ix — Ici

C% =1 —gna(u — ENa) — gca(t — Eca) — 9x(u — Ex) — gci(u — Ecy)
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Conductances

+
Extracellular Na

non-Ohmiccurrents K e
(conductancesre not constant) iniacelliar TS e S
lon channels:
} Large transmembrane proteins with agueous pores
+  Electrical conductance of individual channels is controlled by gates
(gating particles)
}  Gates can change the state of the channel: open/closed
} Gates can be sensitive to theembrane potentialMoltagedependent
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PersistentConductances

ipid bilayer } avoltage sensor is connected to a
o 1= =i swinging (activation) gate that can
e = = V1 open or close the pore
l e el B R
, R ) | } gate opening: activation of the
AY O A==V gate conductance
selectivity / ;queous -3 A S . .
i B } gate closing: dactivation of the
W poen | conductance
_1; '_;:_;.,.,,,-. } results in gersistent(or non
S inactivatingconductance
e YA -
i 1 Probability of the channel to be
openedn €
Voltagedependency /
depolarization of the membrane 92ting variablethe probability that
leadsto increasing one of thek sub-units of the gate is
opened
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TransientConductances

+ Two gates regulates the channel:
"""""" N S 1 activation gate & 1 inactivation gate

/;'< o Qe } The activation gate is opened with
= L \® probability&
1= ' inactivation . . .
o (OEIE + The inactivation gate (the ball) does
k . - Pot block the channel with probability
— @ Q
— T 1 The channel is opened with probability
- & Q
) } The channel opens transientiyile
I: the membrane is depolarized
Voltagedependency

Depolarization: increasirg, decreasinfQ
Hypekrpolarization: decreasiniy, increasingQ
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The HodgkitHuxleyModel




The HodgkirHuxley Model

} One of the most important models in Computational
Neuroscience

} Based on studies by Hodgkin and Huxley (in the 50s) on
the squid axon
} The squid axon has 3 major currents:
Voltagegated persistent Kcurrent with 4 activation gates

Voltagegated transient N'acurrent with 3 activation gates and
1 inactivation gate

Ohmicleak current (all the other ions)
I[ion] = Glion] P (u - E[zon])
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HodgkinrnHuxley Model

1|
L T

leak current

I
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HodgkinHuxley Model

) leak current
C __ K Na
i
1

1 & lERQ gating variables

& = an(w)(1 = h) — Bu(u)h 1 1, ¢empirical functions
adjusted by Hodgkin and Huxley
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HodgkinHuxley Model

Il‘ IK IN(I. IL

N N

) N Ve

L , f f )
TRﬂ ﬁ Cd =1—gin' (u—FEx)—gnam’h (u— Eng) — g1 (u— Ep)

The equations for the gating variables can be rewritten as

dn __ mno(u)—u dm __ mo(u)—u dh __ ho(u)—u

dt Tn dt Tm dt Th

where:

no(u) = an(zfi%l(u)ﬁn(”) - an(u)—ll-ﬁn(u) b £ (O 0,729
ot (1 asymptotic values

mo(u) = am(u)fafn(uw'fm(“) = B ) Z z@r“z 0,z (0

ho(u) = oo (W) = 5oyt § ’

an(w)+B8n (uw)’ on (W) +Bn (u) Ime constants
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HodgkinHuxley Modek Dynamics

1.0

205}

asymptotic values

e o = L

0.0
-100.0

+ Sodium (N§ ¢ inward current:

}  Potassium (K¢ outward current:
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-50.0

50.0

DTU N
u [mV]

100.0

T(u) [ms]

10.0

time constants n |_|j_)K+

50 ¢+

m,

Activation increases for increasing membrane potential
Inactivation increases for increasing membrane potential
BUT: activation is faster than inactivation (transient current)

Activation increases for increasing membrane potential
BUT: activation is relatively slow (slower than activation 9f Na

h MHNa



HodgkinHuxley Modelk Spike Generation

100 100

T(u) [ms]

Au(t) [mV]
AU(t) [mV]

—_ e N

(%] W e8] )
=] [=] =] =] =]

—— -10

0 5 10 15 20 10 15 20 25 30

t [ms] t [ms]
An external input (e.g. an EPSP) leads to a depolarization (u increases)
Conductance of Nancreases rapidly, Néns flow in the cell and increases even further
If the feedback is strong enough the action potential is initiated

At high values of depolarization, the*Ndarrent is stopped by the inactivation ga@tHn 0
conductance of Kincreases and*fons flow outside the cell

The membrane is fpolarized, with a negative overshoot (refractoriness)

Threshold behavior: if the stimulating input is below a certain amplitude the action potentia
IS not initiated and the membrane ispelarized
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The HodgkirHuxley Model Summary

'irh' 'r."\-'rl IL
P

o o

& ]

C%‘ =1 —gpn® (u—Eg)—gne m*h (u— Eng) — g1, (u— Ep)

2 = 4 (u)(1 = n) = Ba(u)n
(ii_f - Ulm'(u](] - Tn‘) - ﬁ'a]?:i('if;)'rf'é

% = ap(u)(1 = h) = Br(u)h

Conductancéoased neuron model
Processes that regulate the voltagdependent Kand Nd conductancesvell described

Biophysical mechanisms responsible for action potentials explicitly included in the
mathematical model

Accurate biological realism, BUT slow and difficult to analyze.
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Formal Spiking Neuron Models




Phenomenological Spiking Neuron

} Neuronmodelscan be simplifiedand simulationscan be
accelerated if the biophysical mechanismsof spike
generationare not includedexplicitlyin the model

} Formalthresholdmodelsof neuronalfiring:

Spikesare stereotypedeventsthat occurwhen the membrane
potentialcrosseghe thresholdfrom below

du(t)

t) o w(tY) =9 and >0

Spikesare fully characterizedy their firing time
Modelonlythe subthresholddynamics
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What does a neuron do?
A

Voltage

Voltage

” Time Simplestdea anintegrator



Integrateand-Fire Model

} The most simple casell membraneonductancesire
ignored

} The corresponding equivalent (simplified) circuit only
contains a capacitor

T } Fromthe definitionof the capacity C' = 1 = Ofcll—"; = Ic
du __ du I(t
KCL Ot = 1) d =1

3

}  Spikes arérmaleventscharacterized by the firing time

- {0+ () = 9

1 After the spike the potential is resetdo

} Absolute refractory period: after the spike, the integration
is suspended for\*¥s
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Integrateand-Fire Model

+  Equations
Cdu _ 1Y)
dt — C

Climy o+ u(t) = uy 6 is oftensetto 0

}  Suppose a constant input curre@its applied (e.g. an EPSP), and the last
spike occurred at timé

the time course of the membrane potential can be obtained by integration
In the time intervab ;0

= f Gds = Gt —tW)
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Leaky Integrateand-Fire Model

} The entire membrane conductance is modeled as a singl
leakage term

+ Assumption: the&onductancesre all constant

(true for small fluctuations around the resting membrane
potential)

} Corresponding equivalent circuit: a capacitor in parallel
with a resistor
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Leaky Integrateand-Fire Model

} The entire membrane conductance is modeled as a singl
leakage term

+ Assumption: the&onductancesre all constant

(true for small fluctuations around the resting membrane
potential)

} Corresponding equivalent circuit: a capacitor in parallel

with a resistor hKYQa [F¢6 b YANDKK2FTTFQ

u(t):IRRélR:%f)
KCL:

Io+1Ip=1I(t)=> C% = D — f()

Tm =
time constant
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Leaky Integrateand-Fire Model

1 Time course of the membrane potential?

} Suppose a constant input curre@s appliedandthe

last spike occurred at tine
1 0 07?7?77

TS = —u(t) + RI(t)

FirstOrder linear differential equation (with initial conditiono o T
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FirstOrder Linear Differential Equation

{ y'(t) +at)y(t) = f(1)

y(to) = Yo

solution:  y(t) = yo e~ AM) 4 =AW ft f(s)eA®)ds

to

where:  A(t) = ti) a(s)ds

Also useful to remember:

Q "QoQo Q
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Euler Method

Numerical (approximate) method for solving ODEs

{y’(t) = f(t,y(t))
y(to) = Yo

"= dimension of the

By discretizing the temporal varialite ¢, = to + nh el

The evolution of the system can be approximated by

Y(tns1) = y(tn) + hf(tn, y(tn))
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Leaky Integrateand-Fire Model

1 Time course of the membrane potential?

} Suppose a constant input curre@s appliedandthe

last spike occurred at tine
1 0 07?7?77

TS = —u(t) + RI(t)

FirstOrder linear differential equation (with initial conditiono o T

t—¢(1)
u(t) = Rl (1 —e )

(The membrane potential asymptotically approachi€3d
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Leaky Integrateand-Fire Model

+ When will next spike occur?

u(t?) =9 = RI, (1 — e‘%) T = ¢+(2) _ (1)

AN

RIy—9

Firing rate (with refractory period)

without refractoriness

with refractoriness

60 8.0
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|zhikeviciModel
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Simple Spiking Models

} Modeling the dynamics of excitable neurons
Fast activation of N&hannels
Slow inactivation of Nactivation of K

1 Dynamicasystemwith 2 variables
Onevariablefor the fastvoltageincrease
Onerecoveryvariablefor slowvoltagedecrease

} In many casesthe subthresholddynamicdeadingto the
actionpotential are more importantthan the shapeof the
actionpotentialitself
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Neuron Models; Biological Plausibility vs Cost

i '.integrate-and—fire
3 . ¢/Nntegrate-and-fire with adaptation

'.quadratic integrate-and-fire

(poor)

..integrate-and-fi re-or-burst .FitzHugh-Nag umo
resonate-and-fire

N\

Mﬂrris-Lecar.

olzhikevich (2003) 7. Findmarsh-osey JYIson o

biological plausibility (# of features)

o)

g '22 r

=) 5 13 e Hodgkin-Huxley
(efficient) implementation cost (# of FLOPS) (prohibitive)
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|zhikevichModel

} Two dimensional system of ordinary differential equations

—

= 0.04 u(t)? + 5u(t) + 140 — r(t) + 1
s — afbut) - (1)

—

Ifo o o TV

u=c
r=r+d

0 is the membrane potential,

—

1 is a recovery variable
(Na+ inactivation/K+ activation)
provides negative feedback do

N AV~ AVd

—

model

—

‘Os the applied current
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|zhikevichModel

} Two dimensional system of ordinary differential equations

v'=0.04v2+5v +140-u +|
u=a(bv -u)

if v=30 mV,
thenv-c, u-u+d

Often in literature:
} v is the membrane potential
} uis the recovery variable
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Neuronal Dynamics

} The behavior of a neuron does not depends only on its
electrophysiological properties

+ Two neurons with the same electrophysiological
properties can respond differently to the same input
} Neurons can be thought as dynamical systems

1 Dynamical properties of the neurons have a major role
Especiallypifurcation dynamics

A bifurcation occurs when a small
change to the parameter values of
a system results in a sudden
gualitative change in its behavior
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Neuronal Dynamics

} Neurons are excitable because they are near a transition
(bifurcation) between resting and sustained spiking activit

;5 resting excitable periodic spiking
5]
E spike
Q
j= N
g
8 PSP i Ve / / /
£ t time, t 1 :
stimulus — A B
stimuli
s
e
g =
: eriodic
5 spike P orbit
N OV 7
8 | N
+
X

membrane potential, V

The system is excitable because its equilibrium is near a bifurcation
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Neuronal Dynamics

1 Four generic bifurcations

O 6

9, / “saddle , saddle node -

saddle-node bifurcation

art e
%3

00
node,  'saddle saddle-node

vy

/] / /7

saddle-node on invariant circle (SNIC) bifurcation

subcritical Andronov-Hopf bifurcation

- / {
4 \e I\
L. !

N - N
supercritical Andronov-Hopf bifurcation
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subthrestold oscillations

co-existance of resting and spiking states

YES NO
(bistable) (monostable)
:E? ddle-node
O saddle-node on
< E saddle-node invariant circle
[=
ne subcritical supercritical
> 8 | Andronov-Hopf Andronov-Hopf
o

Monostable the neuron does not
exhibits the presence of resting and
tonic spiking

Resonator: there exist small amplitude
oscillations of membrane potential



Neuronal Dynamics

+ Integrators vs Resonators
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Firing Patterns

} The most fundamental classes of firing patterns are just 6
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