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CNS mailing list 

 Please, send asap to Prof. Alessio Micheli (micheli@di.unipi.it) 
an email: 

 Subject: [CNS-2017] student 

 Corpus (email text):  

 Name Surname 

 Master degree programme (Bionics eng. or Computer Science?) 

 Any note you find useful for us 

 

 

Thank you. 
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Neuroscience modeling 
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 Introduction to basic aspects of brain computation 

 Introduction to neurophysiology 

 Neural modeling: 

 Elements of neuronal dynamics 

 Elementary neuron models 

 Neuronal Coding 

 Biologically detailed models:  
                                                   the Hodgkin-Huxley Model 

 Spiking neuron models, spiking neural networks 

 Izhikevich Model 

 Introduction to Reservoir Computing and Liquid State Machines 

 Introduction to glia and astrocyte cells, the role of astrocytes in a 
computational brain, modeling neuron-astrocyte interaction, neuron-
astrocyte networks,  

 The role of computational neuroscience in neuro-biology and robotics 
applications. 
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The Computational Brain and Neurophysiology 



Computational Neuroscience 

 Aim 

 Discover and study the properties that characterize the 
mechanisms of data processing that take place in the brain. 

 Study how networks of neurons can produce complex effects, 
such as vision, learning, memory,…  

 Focus on neurons 

 Brains are aggregations of neurons, cells with the peculiar 
ability to communicate by means of voltage propagation 
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Computational Neuroscience 

Interdisciplinary subject 
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Neuroscience Computer Science 

Psychology 

Philosophy 



Design of Neural Networks/Interdisciplinarity 

Neurobiological Analogy – Neural Networks 

 From neurobiological point of view: 

 look at Artificial Neural Networks as a research tool to 
interpret neurobiological phenomena 

 From a Machine Learning point of view: 

 look at neurobiology for new ideas to solve problems 

 

 Aim 

 Study biologically plausible mathematical models able to 
simulate neural dynamics 
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The Computational Brain 

 The brain itself can be viewed as a computer 

 Organic constitution, complex, non-linear, parallel data 
processing 

 A collection of highly specialized interconnected computational 
sub-systems 

 Plasticity allows to adapt the nervous system to its environment 

 Not only a cognitive device:  
needs to cope with thermoregulation, growth, reproduction, 
respiration, regulation of hunger and thirst, sleep-awake 
control, etc. 

 Limitations and constraints: 
time (computation needs to be fast!), space, energy 
consumption, etc. 
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The “living” proof that neural networks are 

effective 



Central Nervous System 
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Gray Matter 

 Neurons’ body cells 

White Matter 

 Neurons’ axons 

Cerebral cortex 

 Outer layer of the neural 
tissue in the brain 



Model of the Central Nervous System 

 Brain/CNS – Neural Net 

 Continually receives and processes information 

 PNS - Receptors/Effectors 

 Converts external stimuli into electrical pulses 

 Convert electrical pulses into discernible responses 

 

 

 

 Feed-forward / Feedback transmission of the information 
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Basic Facts on the Brain 

Hierarchical Organization  
Exploit Geometric properties in the 
elaboration: spatial proximity allows 
to efficiently organize the elaboration 
of the information 

Hierarchical Processing 

 Layered Organization 

 From an anatomical point 
of view: 

 The higher the distance 
from the sensorial input, 
the higher the abstract level 
of processing of information 
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Basic Facts on the Brain 

Feedback connections 

 Hierarchical processing with feedback 

 Reciprocal connections among different areas 
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Reciprocal connections among 
some of the visual cortex areas 



Basic Facts on the Brain 

Specialization of Functions 

 Different regions of the nervous system are specialized to 
different functions 
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Broadmann Areas 



Basic Facts on the Brain 

Numbers 

 1012 neurons in a human nervous system 

 1015 synapses 

 In a 𝑚𝑚3 of cortical tissue: 

 105 neurons and 109 synapses (≈1 synapse/μ𝑚3) 

 Each cortical neuron is connected to 3% of the neurons in 
the surrounding 𝑚𝑚3 
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Neural Modeling: Basics 



The Ideal Spiking Neuron 

 Three functionally distinct parts: 

 Dendrites: input devices 

 Soma: central processing unit 

 Axon: output device 

 Synapse 

 Junction between  
a pre-synaptic neuron and  
a post-synaptic neuron 
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Action Potentials or Spikes 

 Spikes: elementary units of 
neuronal signal transmission 

 Electrical pulses: 
 100 mV of amplitude 

 1-2 ms of duration 

 Spike train: chain of spikes emitted 
by a single neuron 

 Absolute refractory period 

 Minimum distance between two 
spikes 
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Synapses 

Contact axon – dendrite 

Chemical synapse: 

 A presynaptic action potential triggers 
the release of neurotransmitters  

 The neurotransmitters are detected by 
the postsynaptic cell membrane 

 The permeability of the postsynaptic 
membrane to ions changes, leading to a 
change in membrane potential 

 Post Synaptic Potential (PSP): 
the voltage response of the postsynaptic 
neuron to a presynaptic spike 
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Neuronal Dynamics 

 Membrane potential 
 Potential difference between the interior and the exterior of the cell 

 Constant value at rest: 
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 At t = 0 neuron j fires 

 PSP induced in neuron i > 0 Excitatory PSP (EPSP) 
       depolarization 

< 0 Inhibitory PSP (IPSP) 
       hyperpolarization 



Firing Threshold and Action Potential 

When there are only a few presynaptic spikes the membrane potential 
can be approximated by a linear combination of the individual PSP 
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Firing Threshold and Action Potential 

When the membrane potential exceeds a threshold the dynamics changes: 

 spike or action potential: 
sudden depolarization (100 mV excursion) of the membrane potential 

 spike-afterpotential: 
after the spike there is a phase of hyperpolarization below the resting value 
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time of last spike of neuron i 



Spike Response Model 

models the spike and the spike-afterpotential 
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PSPs resting potential 

If the membrane potential reaches the threshold from below then fire! 



Limitations of the Spike Response Model 

 Highly simplified model 

 PSP have always the same shape 

 Dynamics of the neuron depends only on the last firing time 

 Not able to simulate many dynamical behaviors observed in 
biological neurons 

30 

regular spiking with adaptation 

fast spiking 

bursting 

rebound spike 
(release of inhibition can trigger a spike) 
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Particular Neural Dynamics in the Neocortex 
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 Only 6 fundamentals classes of firing patterns 



Neural Coding 

 How do neurons communicate? 

 What is the information contained in a spatio-temporal 
pattern of spikes? 
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Rate Codes 

Code expressed by means of firing rate 

 Rate as a spike count – average over time 
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Frequency – Current (FC) curve 

 Relation between the frequency of firing and the applied (input) current 

 

 

 

 

 
transfer function of the neuron 

 

Cons: 

 Unlikely that neurons can wait to perform a 
temporal average 

Pros: 

 Spikes are a convenient way to transmit a real 
value: just two spikes at 1/ ν  interval would 
suffice to encode the value ν 

 



Rate Codes 

 Rate as a spike density – average over K runs 

 

 

 Rate as a population activity – average over N neurons 
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 Idealized/not realistic (population of N identical neurons) 

 May vary rapidly and reflect sudden changes in the stimulus conditions 

 



Spike Codes 

Neurobiological evidences say that spiking time has a role 

 Time to first spike 
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The information is encoded in 
the temporal distance of the 
neuron’s response to the input 

 



Spike Codes 

 Phase 
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The information is encoded in 
the phase of the spiking time 
with respect to a background 
oscillation 

 



Spike Codes 

 Synchrony 
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The information is encoded in 
the pattern of firing synchrony 
within a population of neurons 
in response to a stimulus 

 



Spike Codes 

 Reverse Correlation 

 Reconstruct the time course of the input stimulus that led to a 
postsynaptic spike 

 Average the input under condition of an identical response 

    spike-triggered average 
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Detailed Neuron Models 



Action Potential and Ion currents 

 From a biophysical perspective changes in the membrane 
potential 𝑢(𝑡) are due to currents of ions that passes 
through the membrane 

 Main ions that take part into this process 

 Sodium Na+, Potassium K+, Calcium Ca2+, Chloride Cl- 
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The difference of ions concentration 
between inside and outside the cell 
is responsible for the generation of 
an electrical potential 

 



Nernst Potential 

 The probability that a molecule takes a state of energy 𝐸 is 
proportional to  

 Given a positive ion with charge 𝑞, its energy in position 𝑥 is 

 

 The ions density in a region with potential 𝑢(𝑥), 𝑛(𝑥) is then 
proportional to  
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 The lower the potential, the higher 
is the density of positive ions 
 



Nernst Potential 
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Nernst Potential 

 

 The ratio between the ions density at two points is 

 

 

 Thus, the concentration difference implies a voltage, called 
Nernst potential 
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Reversal Potential 

 The reversal potential of an ion is its Nernst potential 

 

 

 If Δ𝑢 <  𝐸[ion]  ions flow into the cell 

 If Δ𝑢 >  𝐸[ion]  ions flow out of the cell 

 

45 

 Ion channels: try to equilibrate 
the concentration of ions, i.e. try 
to meet the reversal potential 

 Ion pumps: active pumps that 
balance the flow of ions 

 



Equivalent Circuit 

 Electrical properties of neurons’ membranes depicted in terms 
of the electrical circuit 
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 Membrane: capacitor 

 Ions’ channels: resistors + battery 
(reversal potentials) 
 

 What happens if a current 𝐼 is applied? 
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…see you on Wednesday 


