Adaptive Resonance Theory (ART)

Davide Bacciu

Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it

Applied Brain Science - Computational Neuroscience (CNS)

Incremental Learning in Competitive Networks

- Competitive networks have neuron competing to learn representations of the input stimuli
 - Competition serves to allow neurons to encode different information
 - Two step process with long-range competition and short-range reinforcement (competitive Hebbian learning)
- Incremental learning problem
 - A network should be able to continuously learn from new data
 - Need capabilities to discern what is new (and deserves being learned) from what is old
 - Running out of memory capacity

Stability-Plasticity Dilemma

- Incremental learning requires to address the Stability-Plasticity Dilemma
 - How can a network learn quickly and stably new information without catastrophically forgetting its past knowledge
 - Concept introduced by Stephen Grossberg in 1980
- The Adaptive Resonance Theory (ART, Grossberg 1978)
 - The human brain is very good at solving this dilemma hence we seek inspiration in neurobiology
 - How do the synapses and neurons self-organize to quickly represent information coming as a continuous flow?
 - More of a theory of learning rather than a specific model, based on the concept of resonance

The Adaptive Resonance Theory (ART)

A cognitive and neural theory of how the brain can quickly learn and stably remember and recognize, objects, sounds, events, etc. from a stream of continuous stimuli

- Two key ingredients
 - Category Abstracted representation of coherent/similar input stimuli encoded in some high level neuron structures
 - Resonance The synchronous firing activated by hypothesis search when a stimulus matches well an existing category and that enables quick learning
- Originally proposed as a fully unsupervised learning theory
 - Multi-layered competitive learning networks
 - Can incrementally add new neurons when existing ones do not encode sufficiently well the stimulus

ART Incremental Learning Approach

Precondition

- Assume input samples, so far, have been encoded in *k* categories
- A weight vector w_j is used to represent the typical stimulus encoded by the category

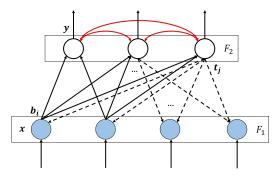
When a new input vector **x** arrives

- Find the winner j* among the k category neurons
- Compare w_{i*} with x
 - if they are sufficiently similar (x resonates with category j*) then update w_{j*} with x
 - else, find/create a free category unit and assign **x** as first member

Addressing the Stability-Plasticity Dilemma

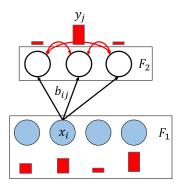
- Standard weight decay in competitive learning does not solve the problem
 - Prevents weights to be erased by new incoming data (stability)
 - Freezes learning after a while (no plasticity)
- ART solution
 - A mechanism that checks if current input is a good enough exemplar of winning category
 - Assess both match and mismatch
 - A top-down reviewing of the bottom-up activated response

Basic ART Architecture



- Inputs **x** and categories **y**
- Bottom-up weights b_i
- Top-down weights **t**_i
- Lateral competition on categories
- ART-1 unsupervised with binary neurons
- ART-2 unsupervised with graded neurons
- ARTMAP supervised

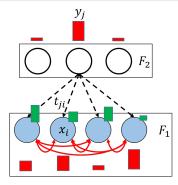
ART-1 - Bottom-Up Phase (Recognition)



- Recognition phase
 - *F*₁ units simply forward binary inputs
 - F₂ units compete to determine winning category
- Typically a winner-takes-all (WTA) *F*₂ competition
 - Enables quick recognition
- Pre-synaptic bottom-up learning rule (instar)

$$rac{db_{ij}}{d au} = lpha_{b} x_{i} y_{j} - eta_{b} y_{j} b_{ij}$$

ART-1 - Top-down Phase (Comparison)



 Post-synaptic top-down learning rule (outstar)

$$\frac{dt_{ji}}{d\tau} = \alpha_t x_i y_j - \beta_t y_j t_{ji}$$

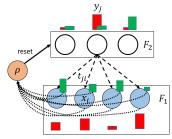
- Comparison phase
 - Winning *F*₂ unit *j* creates a reconstruction of the input through the top-down connections

$$\mathbf{s}_j = \mathbf{x} \mathbf{t}_j^T$$

- *F*₁ compare the reconstructed vector **s**_{*j*} with actual activation **x**
- A soft-competition takes place in F₁ to compare reconstructed vs actual signal

The Vigilance Parameter

A.k.a. soft competition in F_1



Compute overlap between the expected standard stimulus \mathbf{s}^{j^*} and the actual input \mathbf{x}

$$\rho(\mathbf{s}^{j^*}, \mathbf{x}) = \frac{\sum_{i=1}^N s_i^{j^*}}{\sum_{i=1}^N x_i}$$

Vigilance parameter

if ρ(s^{j*}, x) > ρ accept
categorization and update
b_{.i} and t_i with current

stimulus

 if ρ(s^{j*}, x) ≤ ρ test next best category (if available) or recruit a new unit

The Algorithm

- Init $b_i j = 1/(N+1) t_j i = 1$
- Repeat

Sample a training pattern **x**, compute $y_j = \mathbf{b}_j^T \mathbf{x} \ \forall j \in F_2$, $A = F_2$

- 2 Repeat
 - Find $j^* = \arg \max_{j \in F_2} y_j$ and compute $\mathbf{s}_{j^*} = \mathbf{x} \mathbf{t}_{j^*}^T$

2 If
$$\rho(\mathbf{s}_{j^*}, \mathbf{x}) \leq \rho$$
 then $\mathbf{A} = \mathbf{A}/j^*$,

else assign **x** to j^* and update weights

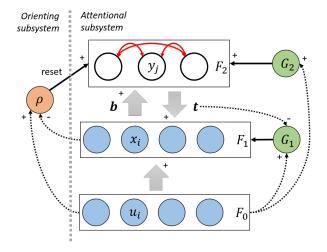
$$b_{ij^{*}i}^{'} = rac{s_{j^{*}i}}{0.5 + \sum_{i=1}^{N} s_{j^{*}i}}$$
 and $t_{j^{*}i}^{'} = s_{j^{*}i}$

3 Until $A = \emptyset$ or **x** is assigned

(d) If $A == \emptyset$ then allocate a new unit with weight vector **x**

Until network is stable

ART - The Detailed Picture



Gain units G_l serve to switch operational phases in the F_l layer

Take Home Messages

- Continuous incremental learning requires maintaining adaptivity without forgetting
 - Stability-plasticity dilemma
- Adaptive Resonance Theory
 - A family of models addressing the dilemma
 - Multi-layer competitive neural networks
 - Double checks the suitability of the encoded memory by measuring how well it can recreate the stimuli (resonance)
- Vigilance parameter determines degree of overlap accepted
 - How do I choose it?
 - What consequences can we expect from having the same vigilance for all neurons?