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Abstract. Durbin’s PBWT, a scalable data structure for haplotype matching, has been successfully
applied to identical by descent (IBD) segment identification and genotype imputation. Once the PBWT
of a haplotype panel is constructed, it supports efficient retrieval of all shared long segments among all
individuals (long matches) and efficient query between an external haplotype and the panel. However,
the standard PBWT is an array-based static data structure and does not support dynamic updates
of the panel. Here, we generalize the static PBWT to a dynamic data structure, d-PBWT, where the
reverse prefix sorting at each position is represented by linked lists. We developed efficient algorithms
for insertion and deletion of individual haplotypes. In addition, we verified that d-PBWT can support
all algorithms of PBWT. In doing so, we systematically investigated variations of set maximal match
and long match query algorithms: while they all have average case time complexity independent of
database size, they have different worst case complexities, linear time complexity with the size of the
genome, and dependency on additional data structures.
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1 Introduction

Durbin’s positional Burrows-Wheeler transform (PBWT) [2] is a scalable foundational data struc-
ture for modeling population haplotype sequences. It offers efficient algorithms for matching haplo-
types that approach theoretically optimal complexity. Indeed, PBWT has been applied to important
tasks such as genotype imputation [4], identification of identical by descent (IBD) segments [6], and
genealogical search [5]. This has produced methods that scale to biobank scale datasets. The original
PBWT paper described an array version of the PBWT, and a set of basic algorithms: Algorithms 1
and 2 for construction, Algorithms 3 and 4 for reporting all versus all long matches and set maximal
matches, and Algorithm 5 for reporting set maximal matches between an out-of-panel query against
a constructed PBWT panel. Recently, Naseri et al. [5] presented a new algorithm, L-PBWT-Query,
that reports all long matches between an out-of-panel query against a constructed PBWT panel in
time complexity linear to the length of the haplotypes and constant to the size of the panel. Naseri
et al. introduced Linked Equal/Alternating Positions (LEAP) arrays, an additional data struc-
ture allowing direct jumping to boundaries of matching blocks. This algorithm offers efficient long
matches, a more practical target for genealogical search. Arguably, L-PBWT-Query makes PBWT
search more practical as it returns all long enough matches rather than merely the best matching
ones. We believe that L-PBWT-Query represents a missing piece of the PBWT algorithms.

However, all above algorithms are based on arrays, which do not support dynamic updates.
That means, if new haplotypes are to be added to, or some haplotypes are to be deleted from an
existing PBWT data structure, one has to rebuild the entire PBWT, an expensive effort linear to
the number of haplotypes. This will be inefficient for large databases hosting millions of haplotypes
as they may face constant update requests per changing consent of data donors. Moreover, lack of
dynamic updates prohibits PBWT to be applied to large-scale genotype imputation and phasing,
which typically go through the panel multiple times and update individual’s haplotypes in turn.
It is much more efficient to allow updating the PBWT with an individual’s new haplotypes while
keeping others intact.

In this work we introduced d-PBWT, a dynamic version of the PBWT data structure. At each
position k, instead of keeping track of sequence order using an array, we use a linked list, whose
nodes encapsulate all pointers needed for traversing PBWT data structures. Our main results
are: We developed efficient insertion and deletion algorithms that dynamically update all PBWT
data structures (Algorithms 1 and 4). In addition, we established that d-PBWT can do Durbin’s
Algorithms 1-5 and L-PBWT-Query with the same time complexity as the static version PBWT.
While Durbin’s Algorithm 5 and L-PBWT-Query are practically independent of the number of
haplotypes in the average case, we found that they are not in the worst case. We show two search
algorithms for set maximal matches and long matches with worst case linear time complexity, but
requiring multiple passes (Algorithms 2 and 3), and one search algorithm for long matches with
average case linear time complexity with single pass without additional LEAP arrays data structures
(Algorithm 7). These three new search algorithms can also be applied to the static PBWT. Table 1
summarizes the major contributions of this paper.

2 Methods

2.1 PBWT

The following is a review of Durbin’s PBWT paper and notation [2]. PBWT is a data structure
that groups similar strings by sorting the reverse prefixes at each length. Say we have a PBWT
data structure of a set X of M haplotype sequences xi ∈ X, i ∈ {0 . . .M − 1}. Each sequence
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Table 1. Summary of Algorithms on PBWT and d-PBWT

Data
Structure

Functions Algorithm ID Time Complexity and Comments

Durbin [2] PBWT

Construction Alg. 1&2 O(MN)
All vs. All Long Matches
and Set Maximal Matches

Alg. 3&4 O(MN)

Set Maximal Match Query Alg. 5 Avg. O(N)∗

Naseri et al. [5] PBWT Long Match Query
Alg. 2

(L-PBWT-Query)
Avg. O(N)∗. One sweep with

LEAP arrays.

This work d-PBWT

Insertion Alg. 1 Avg. O(N)
Deletion Alg. 4 Avg. O(N)

Set Maximal Match Query Alg. 2 O(N)

Long Match Query Alg. 3
O(N). Three sweeps without

LEAP arrays.

Long Match Query Alg. 7
Avg. O(N)∗. One sweep without

LEAP arrays.
Construction - O(MN). Use Durbin’s Alg. 1&2

All vs. All Long Matches
and Set Maximal Matches

- O(MN). Use Durbin’s Alg. 3&4.

Conversion Alg. 5&6 O(MN)

M is the number of sequences. N is the number of sites. c is the number of matches found. Time complexities
assume c < N . The number of sweeps and LEAP arrays usage are only mentioned for long match query algorithms
because they are important for genealogical search.
∗ See Appendix A for discussion of the time complexity.

has N sites indexed by k ∈ {0 . . . N − 1}, values at a site are 0 or 1, xi[k] ∈ {0, 1}. For some
haplotype sequence s we use s[k1, k2) to represent the substring of s beginning at k1 and ending
at k2 − 1. The length of this substring is k2 − k1. Sequences s and t have a match from k1 to k2
if s[k1, k2) = t[k1, k2). This match is locally maximal if it can’t be extended, i.e., (s[k1 − 1] 6=
t[k1 − 1] or k1 = 0) and (s[k2] 6= t[k2] or k2 = N). A match is a long match if it is locally
maximal and at least length L. A match is a set maximal match from a sequence s to X if it
is locally maximal and there is no longer match between s and any other sequence from X that
covers the matching region.

The prefix array a contains N+1 sorted orderings of the sequences, one for each k ∈ {0 . . . N}.
The k-th sorted ordering is ak, the ordering of ak is based on the reversed prefixes x[0, k), if the
prefixes are the same they are ordered according their index i in X. ak can also be thought of as the
sorted ordering of the reversed prefixes of length k. In any ak, adjacent sequences are maximally
matching until k. yki is the i-th sequence in ak, yki = xak[i]. The divergence array keeps track of
the start position of locally maximal matches ending at k between a sequence and the sequence
above it in ak, i.e., dk[i] is the smallest value j such that yki [j, k) = yki−1[j, k). The extension
function wk(i, h), h ∈ {0, 1} gives the ak+1 index of the first sequence after ak[i] (ak[i] inclusive)
that has h at site k, i.e.,

wk(i, h) = g s.t. ak+1[g] = ak[j] s.t. j = min
i≤j<N

{j | ykj [k] = h}.

In implementation, the extension function is fully specified by two arrays: u and v. wk(i, 0) is stored
at uk[i] and wk(i, 1) is stored at vk[i].

wk(i, h) =

{
uk[i] if h = 0

vk[i] otherwise (h = 1)

v is redefined here to make the extension function more intuitive.
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Table 2. PBWT and d-PBWT equivalencies

Entity PBWT d-PBWT

Column k ak, dk, uk, vk linked list hung from top node at k

Index i at Column k ak[i], dk[i], uk[i], vk[i]
node (n) that has i nodes above it

and is in column k
Sequence name ak[i] n.sequenceID
Match length dk[i] n.d

Move to previous sequence in reverse
prefix sorting

ak[i− 1], dk[i− 1], uk[i− 1], vk[i− 1] n.above

Move to next sequence in reverse prefix
sorting

ak[i+ 1], dk[i+ 1], uk[i+ 1], vk[i+ 1] n.below

Move to next site by extension function uk[i], vk[i], wk(i, h) n.u, n.v, n.w(h)
Substring in original haplotype yk[j, k), xak[i][j, k) n[j, k), xn.sequenceID[j, k)

2.2 d-PBWT

Our main observation is that PBWT algorithms are not necessarily array algorithms. The essence of
PBWT is, at each site, sequences are ordered by their reverse prefix, and the updates of the ordering
across adjacent sites tracked by pointers. However, the ordering of sequences is not necessarily
tracked by prefix arrays. This fact might be not obvious as the original BWT [1] was based on
arrays and all Durbin’s PBWT algorithms and previous PBWT algorithms are written in the array
language. In this work we propose using a doubly linked list at each site to track the sorting. In
doing so, we can enable PBWT for dynamic updates, while still maintaining all basic operations of
PBWT. Below we formally describe the dynamic version of PBWT, d-PBWT, and all its algorithms.

Like PBWT, the d-PBWT consists of N columns3, each corresponds to one site4. Column k
is a doubly linked list of M nodes that represents the reverse prefix sorting of all M sequences
at site k. Each column has a top node. The top node of column k is noted as (k, 0), containing
the first sequence in reverse prefix sorting at column k. A node n in column k is noted as (k, i)
iff it takes i node traversals to reach n from the top node of column k. It turns out that we
can encapsulate all necessary PBWT pointers at (k, i), including ak[i], dk[i], uk[i], and vk[i] inside
individual nodes: A node n has one function, w, and six properties. The properties are above, below,
sequenceID, d, u, and v. n.above represents (k, i−1) and n.below represents (k, i+1). n.sequenceID
is an integer ∈ {0 . . .M − 1} that is unique to the sequence n represents, i.e., n.sequenceID is
ak[i]. n[j, k) is equivalent to yik[j, k) and xn.sequenceID[j, k). n.d is equivalent to dk[i], i.e., n.d =
min0≤j≤k s.t. n[j, k) = n.above[j, k). Each node also has u and v pointers that make up the
extension function, these are equivalent to the u and v arrays as well. This means that they point
to the node in the next column of the first sequence below them (self included) that has 0 (for u)
or 1 (for v). n.w(h) gets/sets n.u if h = 0, otherwise n.v. Lastly, the haplotype panel of d-PBWT
is a dynamic array of M haplotypes. The equivalencies between data structures of PBWT and
d-PBWT are summarized in Table 2.

2.3 Insertion

The insertion algorithm works by first inserting the nodes of z in the correct position in each
column and then calculating the divergence values after. This is analogous to first updating the
prefix arrays and then updating the divergence arrays. This is done by first sweeping forwards

3 While column is an array-biased term, we abuse it for convenience of corresponding back to array-based PBWT.
4 It is OK to use array for indexing columns as long as the sites of a genome are stable. However, it may be possible

to extend the columns to be non-linearly sorted, as in variant graph [3].
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column
k

x7

x6

x2

z

x5

x1

x4

x3

x8

x0

tk

x
5 .w(z[k])

column
k + 1

x7

x5

x1

x8

x0

x6

x2

x4

x3

tk+1

(value at site k) = 0

(value at site k) = 1

Fig. 1. Finding the insertion location of z at next column. tk.w(z[k]) returns tk+1. This is because the first sequence
below x5 (tk) that has the same value as z at k is x4. tk.w(z[k]) points to the k + 1 node of the first sequence below
tk (tk inclusive) that has the same value as z at k. Therefore, tk.w(z[k]) points to the k + 1 node of x4.

through the data to insert the nodes, and then sweeping backwards through the data to calculate
the divergence values. z is inserted into the dynamic haplotype panel in the forward sweep.

We update the prefix panel by keeping track of the node that z should be above and then
inserting z above said node. We define tk as the node that z should be above in column k. If
we have tk, we can get tk+1 using the extension function. The sequence that will be below z at
column k + 1 is the first sequence below z (not inclusive) that has the same value as z at k, i.e.,
tk+1 = tk.w(z[k]). We can use this to calculate all tk’s and insert z above them. See Figure 1.

We also have to maintain the u and v pointers. The contiguous group of sequences directly

above z at k that have the opposite of z[k] at k need to have their

{
u if z[k] = 0

v otherwise (z[k] = 1)

pointer updated to point to zk+1. Fortunately, because of linkage disequilibrium 5 this will be a
small constant on average. Furthermore, zk.w(z[k]) is equal to zk+1 and zk.w(opposite of z[k]) is
equivalent to tk.w(opposite of z[k]) (zk is the node of z in colum k). Therefore u and v pointers of
column k are updated after insertion of zk+1 into column k + 1. See Figure 2.

The only thing left to do is update the divergence values. For each column k, only 2 divergence
need to be set, the divergence of z and the divergence of z.below, all other divergence values remain
unchanged because the sequence above all other sequences remain unchanged. We will update the
divergence values by going backwards through the columns and keeping track of the minimum
divergence value (longest match) found so far. A key observation is that at any column k, the
divergence value of z must be at least the divergence value of z at k + 1, i.e., zk.d ≤ zk+1.d. This
is true because if the sequence above z at k + 1 matches with z r sites backwards from k + 1, then
that sequence will be above z at k and the sites will still match. The same goes for z and z.below.
(See Lemma 1 in Appendix B for the proof of this claim.) Therefore, to calculate the divergence
values we go from k = N → 1 keeping track of divergence value of previous column. The divergence

5 Durbin says in section 2.5: “This is because population genetic structure means that there is local correlation in
values due to linkage disequilibrium, which means that haplotypes with similar prefixes in the sort order will tend
to have the same allele values at the next position, giving rise to long runs of identical values in the y array” [2].
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Before
column

k

x6

x8

x7

x2

z

x4

x3

x5

x0

x1

column
k + 1

x8

x7

x2

x3

x5

x1

x6

x4

x0

After
column

k

x6

x8

x7

x2

z

x4

x3

x5

x0

x1

column
k + 1

x8

x7

x2

x3

x5

x1

x6

z

x4

x0

(value at site k) = 0

(value at site k) = 1

u pointer

v pointer

contiguous block of
sequences above z
with the opposite
value as z at site k

Fig. 2. Updating the u and v pointers when inserting the z node into column k+1. Updated items are bold, including
z, four v pointers, and one u pointer. It also shows the update of the w.(opposite of z[k]) pointers of the contiguous
block of sequences above z with the opposite value as z at site k.

x3 1 0 1 1 1 1 1 0 1 1 0

z 1 1 1 0 1 1 0 1 1 1 0

x2 1 1 0 0 0 0 1 1 1 1 0

x1 0 0 0 0 1 1 0 1 1 1 1

x3 1 0 1 1 1 1 1 0 1 1

x1 0 0 0 0 1 1 0 1 1 1

z 1 1 1 0 1 1 0 1 1 1

x2 1 1 0 0 0 0 1 1 1 1

column
k + 1

site
k

column
k

site
k − 1

divergence values at k

guaranteed divergence at k − 1

new equal positions discovered

Fig. 3. Updating the divergence value of z and z.below at position k based on position k + 1. At column k we know
that there is some sequence above z that matches until the divergence value of z in column k + 1. This is because if
the sequence is above z in column k + 1 and it matches at site k, then it is above z in column k. The relative order
of sequences that have the same value at site k is the same in columns k and k + 1. The same goes for z.below and
the divergence value of z.below.

value of the zk.below and zk is calculated by decrementing from divergence of zk+1.below and zk+1

until the first site that is different is found. See Figure 3.

The time complexity of the Insertion algorithm (Algorithm 1) is average case O(N). This is
average case instead of worst case solely because of updating the u and v pointers and insertion of
z into the dynamic haplotype panel. However, as stated, because of linkage disequilibrium, a case
where the constant is non-negligible is extremely rare. Insertion of z into the dynamic haplotype
panel is amortized O(N), therefore it is average case O(N). The insertion of the nodes of z into the
correct position in each column is worst case O(N) because insertion into one column is constant
time and there are N columns inserted into. The divergence calculation is also worst case O(N),
because the outer loop runs for N iterations and the sum of all iterations of the inner loop will be
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Algorithm 1: Insertion: Insert new sequence z into d-PBWT

// insert into linked list without divergence values

t0 = top node of column 0;
z0.sequenceID = M ;
insert z0 above t0; // update above and below pointers accordingly

for k = 0→ N − 1 do
make new node zk+1;
zk.w(z[k]) = zk+1;
zk.w(opposite of z[k]) = zk.below.w(opposite of z[k]);
tk+1 = tk.w(z[k]);
zk+1.sequenceID = M ;
insert zk+1 above tk+1; // update above and below pointers accordingly

temp = zk.above;
while temp[k] 6= z[k] do

temp.w(z[k]) = zk+1;
temp = temp.above;

xM [k] = z[k]; // update dynamic haplotype panel

// calculate divergence values

zdtemp = N ;
bdtemp = N ;
for k = N → 0 do

zdtemp = min(zdtemp, k);
bdtemp = min(bdtemp, k);
while zk[zdtemp − 1] = zk.above[zdtemp − 1] do zdtemp −−;
while zk[bdtemp − 1] = zk.below[bdtemp − 1] do bdtemp −−;
zk.d = zdtemp;
zk.below.d = bdtemp;

M + +;

at most N . The sum of all iterations of the inner loop will be at most N because it decrements
an index from N → 0 over the whole algorithm. The fact that a “virtual insertion” algorithm (i.e.,
find all divergence and tk values without updating u and v pointers or inserting z) is worst case
O(N) will be used later to show the time complexity of the query algorithms.

2.4 Set Maximal Match Query

Durbin’s Algorithm 5 is not worst case O(N), refer to Appendix A for clarification. Nevertheless,
we have empirical evidence of Algorithm 5’s O(N) performance in the average case [5]. Here we
show a worst-case O(N) algorithm for outputting set maximal matches from z to X.

The set maximal match query virtually inserts z into the d-PBWT. The sweep back of the
insertion algorithm is modified so that set-maximal matches are simultaneously outputted. The set
maximal match query is fairly straightforward after one vital element is understood. If z’s locally
maximal match ending at k matches farther back than its locally maximal match ending at k + 1,
then z’s locally maximal match ending at k is a set maximal match (see Lemma 2 in Appendix B
for the proof). Therefore, we can just compare divergence values at k and k + 1 when calculating
them to find and output set maximal matches.

A match is a set maximal if the match is locally maximal and there is no match with z that
encompasses this match. We know that the match is locally maximal because we defined it as
“locally maximal match ending at k” and it ends at k, therefore it is locally maximal (we know it
ends at k because if it didn’t the locally maximal matches of k and k + 1 would match to the same
point). Lastly, if there was a match with z that encompassed this match, then the locally maximal
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Algorithm 2: Set Maximal Match Query: Find set maximal matches from z to sequences
in the d-PBWT
// Find all tk’s
t0 = top node of column 0;
for k = 0→ N − 1 do

tk+1 = tk.w(z[k]);
// calculate divergence values and output set-maximal matches

zdtemp = N ;
bdtemp = N ;
for k = N → 0 do

zdtemp = min(zdtemp, k);
bdtemp = min(bdtemp, k);
while zk[zdtemp − 1] = tk.above[zdtemp − 1] do zdtemp −−;
while zk[bdtemp − 1] = tk[bdtemp − 1] do bdtemp −−;
zk.d = zdtemp;
belowzk.d = bdtemp;
if min(zk.d, belowzk.d) < min(zk+1.d, belowzk+1.d) then

if zk.d < belowzk.d then
output set maximal match from z.sequenceID to tk.above.sequenceID at [zk.d, k);
temp = tk.above;
while temp.d ≤ zk.d do

temp = temp.above;
output set maximal match from z.sequenceID to temp.sequenceID at [zk.d, k);

else
output set maximal match from z.sequenceID to tk.sequenceID at [belowzk.d, k);
temp = tk.below;
while temp.d ≤ belowzk.d do

output set maximal match from z.sequenceID to temp.sequenceID at [belowzk.d, k);
temp = temp.below;

matches of k and k + 1 would match to the same point. Therefore, the z’s locally maximal match
ending at k is a set-maximal match and can be outputted. Furthermore, there might be multiple
sequences with this match, this is easily checked with divergence values.

Lastly, since the sequence above and below z can’t match z with the same divergence, locally
maximal matches will either be all above or all below, therefore only the direction with the smaller
divergence value (longer match) will be checked. Assume the sequence above and below z in the sort
order match z with the same divergence, the sequence above has value 0 one position behind and
the sequence below has value 1. z must have either 0 or 1 at this position. Therefore the sequences
above and below z do not match z with the same divergence.

The time complexity of the Set Maximal Match Query algorithm (Algorithm 2) is worst case
O(N + c). The virtual insertion is O(N) because the haplotype panel and the u and v pointers are
not updated. The while loops are only entered when there is a set maximal match to output and
each match is outputted exactly once. Therefore the sum of iterations of the output while loops is
bounded by c (number of matches found) and the whole algorithm is O(N + c).

2.5 Long Match Query

Naseri et al. [5] first proposed an efficient algorithm (L-PBWT-Query) to find all long matches
between a query haplotype z and a database of haplotypes X in average case O(N + c) time by
using PBWT and LEAP arrays to skip unnecessary checks (L-PBWT-Query is average case because
it relies on Durbin’s Algorithm 5, see Appendix A). Here we propose a new algorithm for finding
long matches without using LEAP arrays in d-PBWT in worst case O(N + c) time.
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z

fL
k

gLk

ftemp

gtemp

fL
k+1

gLk+1, g
L+1
k+1

fL+1
k+1

column
k

site
k − 1

column
k + 1

site
k

L
k block

block of sequences outputted

L+1
k+1 block

sequences that match
with z length L
L
k+1 block

dZ

match outputted

x3 0 0 0 0 0 0

x6 0 1 0 0 0 0

z 0 1 0 1 0 0

x2 0 0 1 1 0 0

x7 0 0 1 1 0 0

x0 1 1 1 0 1 0

x5 0 0 1 1 0 1

x1 1 1 1 0 1 1

x8 0 0 0 1 1 1

x4 1 0 0 1 1 1

x2 0 0 1 1 0 0 0

x5 0 0 1 1 0 1 0

x1 1 1 1 0 1 1 0

x8 0 0 0 1 1 1 0

x4 1 0 0 1 1 1 0

x3 0 0 0 0 0 0 1

x6 0 1 0 0 0 0 1

0 1 0 1 0 0 1

x7 0 0 1 1 0 0 1

x0 1 1 1 0 1 0 1

Fig. 4. Computation of {fL
k+1, g

L
k+1} using {fL

k , gLk } and extension function. L = 3. fL
k .w(z[k]) and gLk .w(z[k]) gives

fL+1
k+1 and gL+1

k+1 . From there, the boundaries are expanded to include sequences that match with z length L until k+1.

The new boundaries are fL
k+1 and gLk+1. At the same time, fL

k .w(opposite of z[k]) and gLk .w(opposite of z[k]) is used
to get ftemp and gtemp. These mark the block of sequences that match with z length L or longer and the match ends
at site k.

We will need the divergence values for our query algorithm, therefore the first thing we do is
virtually insert z into the data structure. This means we get all the tk values and all the new
divergence values if z was inserted. Then we do a third sweep of the data while keeping track of a
matching block. Note that we don’t update the haplotype panel or u and v pointers.

The high level idea of this algorithm is to keep track of the block of sequences that match with
z length L or longer until k. We will denote the boundaries of this block fL

k and gLk , fL
k points to

the first sequence in the block and gLk points to the first sequence below fL
k not in the block. Note

that the definition of fL and gL is different from Durbin’s definition of f and g.

Given fL
k and gLk , we want to get fL

k+1 and gLk+1. First, we use the extension function. fL
k .w(z[k])

will give us the position in column k + 1 of the first sequence after fL
k that has the same value as z

at k. Likewise with gLk .w(z[k]). Therefore, fL
k .w(z[k]) and gLk .w(z[k]) will give us the fL+1

k+1 and gL+1
k+1

(see Lemma 3 in Appendix B for the proof). fL+1
k+1 and gL+1

k+1 mark the boundaries of the block

of sequences that match with z length L + 1 or longer until k + 1. The difference between {fL+1
k+1 ,

gL+1
k+1 } and {fL

k+1, g
L
k+1} is only the sequences that match with z length L until k + 1. Therefore,

we can intuitively use the divergence values to check if a sequence on the boundary matches with z
length L, if it does, we move the boundary to include it in the block. After both boundaries reach
a sequence that doesn’t match with z length L until k + 1, we have found fL

k+1 and gLk+1.

There are two cases when we try to expand our L+1
k+1 block. If it is not empty (fL+1

k+1 6= gL+1
k+1 ), we

can use the divergence values of the sequences in the d-PBWT to expand the boundaries. However,
if it is empty (fL+1

k+1 = gL+1
k+1 ), we must use the divergence values we calculated during virtual

insertion to expand the boundaries initially. Lastly, when we expand the boundaries to include a
new sequence in the block we also remember the starting position of the match (k + 1 − L) in an
array dZ so that we can output it later. Meanwhile, fL

k .w(opposite of z[k]) and gLk .w(opposite of
z[k]) will give us the block of sequences (in column k + 1) that have matches length L or longer
until k and their match ends at k, we output these. We can repeat this procedure for all k to output
all matches longer than L between query sequence and database. See Figure 4.

The time complexity of this algorithm is easy to analyze. The Long Match Query algorithm
(Algorithm 3) runs in worst case O(N + c) time. The virtual insertion portion of the algorithm
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Algorithm 3: Long Match Query: Find long matches between query sequence z and
sequences in the d-PBWT

/* Insert but without actually inserting, just calculate tk’s and divergence values */

t0 = top node of column 0;
for k = 0→ N − 1 do

tk+1 = tk.w(z[k]);

zdtemp = N ;
bdtemp = N ;
for k = N → 0 do

zdtemp = min(zdtemp, k);
bdtemp = min(bdtemp, k);
while zk[zdtemp − 1] = tk.above[zdtemp − 1] do zdtemp −−;
while zk[bdtemp − 1] = tk[bdtemp − 1] do bdtemp −−;
zk.d = zdtemp;
belowzk.d = bdtemp;

// Query sweep

gL0 = fL
0 = t0;

for k = 0→ N − 1 do
ftemp = fL

k .w(opposite of z[k]);

gtemp = gLk .w(opposite of z[k]);

f ′ = fL
k .w(z[k]) ; // here f ′ = fL+1

k+1

g′ = gLk .w(z[k]) ; // here g′ = gL+1
k+1

while ftemp 6= gtemp do // output matches longer than L that ended at k

output match at [dZ[ftemp.sequenceID],k) between ftemp.sequenceID and z;
ftemp = ftemp.below

if f ′ = g′ then // case where {fL+1
k+1 , g

L+1
k+1 } block is empty

if k + 1− zk+1.d = L then
f ′ = f ′.above;
dZ[f ′.sequenceID] = k + 1− L;

if k + 1− belowzk+1.d = L then
dZ[g′.sequenceID] = k + 1− L;
g′ = g′.below;

if f ′ 6= g′ then // expand boundaries of block if not empty

while f ′.d ≤ k + 1− L do
f ′ = f ′.above;
dZ[f ′.sequenceID] = k + 1− L;

while g′.d ≤ k + 1− L do
dZ[g′.sequenceID] = k + 1− L;
g′ = g′.below;

// now that boundaries were expanded, f ′ = fL
k+1 and g′ = gLk+1

fL
k+1 = f ′;

gLk+1 = g′;

runs in worst case O(N) because the haplotype panel and the u and v pointers are not updated.
The query sweep loop has N iterations. All operations in one iteration of the query sweep loop
take constant time except for the output while loop and the boundary expansion while loop. The
output while loop will only output each match once, therefore the sum of all times it is entered in
the algorithm is c, the number of matches found. The boundary expansion loop is entered once for
every match that has length L (exactly) at some k. Every match will have length L exactly one
time throughout the whole iteration of the algorithm, therefore the sum of all times the boundary
expansion loop is entered is c. Therefore the algorithm runs in worst case O(N + c) time.
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2.6 Deletion

Deletion of a sequence from the d-PBWT is easy. If sequence i is to be deleted, sequence xM−1 needs
to have the sequenceID of all its nodes changed from M − 1 to i so that the sequenceID definition
is maintained after deletion of xi. Furthermore an array of pointers to the node in column 0 of
each node needs to be kept so that the node of xi in column 0 can be accessed in constant time.
(Maintenance of this array is just an amortized constant time operation in the insertion and deletion
algorithms.) The contiguous block of sequences above the node of xi in column k neeeds to have
their {u if xi[k] = 1, v otherwise} pointers updated. They are set to the value of the node below
xi’s node. Lastly, the node of xi in each column is deleted and the divergence of the node below it
is updated. The whole algorithm can be done in one sweep. The time complexity of this algorithm
is average case O(N). This is not worst case because of the update of the u and v pointers and
haplotype panel. However, as stated before, update of the dynamic haplotype panel is amortized
O(N) and the number of u and v pointers that will be updated per column will be a small constant
on average. See Algorithm 4 in Appendix C.

2.7 Equivalence and Conversion between d-PBWT and PBWT

Equivalencies between data structures of PBWT and d-PBWT (Table 2) suggest that all con-
struction algorithms and search algorithms can be translated between PBWT and d-PBWT with
minimal changes. Moreover, d-PBWT data structure can be initialized by direct bulk conversion
from an existing PBWT. Conversion of the d-PBWT to a PBWT in O(MN) time is trivial given
its description. So is conversion of a PBWT to a d-PBWT. See Algorithms 5 and 6 in Appendix C.

Durbin’s Algorithms 1-5 can be implemented on the d-PBWT with a little modification. Further-
more, the pseudocode of our query algorithms are presented in the notation of d-PBWT, however,
they can easily be applied to PBWT.

2.8 Single Sweep Long Match Query

While a Long Match Query algorithm that runs in worst case O(N) is an interesting theoretical
development, an average case O(N) algorithm that only sweeps through the data once may be
more useful for real world applications, particularly implementations that use memory mapping.
The pseudocode for an average case O(N) Single Sweep Long Match Query algorithm (Algorithm 7)
is provided in Appendix D. This is done using Durbin’s ek. Of course, the insertion algorithm can
also be modified to run in a single sweep using ek.

3 Discussions

In this work, we developed the first dynamic PBWT data structure that allows efficient updating.
When inserting or deleting a haplotype in a static PBWT panel, one has to reconstruct the entire
PBWT panel in O(MN) time, while using dynamic PBWT, these can be achieved in Avg. O(N)
time. In addition, we simplified and improved the PBWT query search algorithms (Durbin’s Algo-
rithms 5 and L-PBWT-Query) in a worst case O(N) time and with no additional data structures.
In doing so, we believe that we have brought the PBWT data structure closer to its full potential.

This work would enable efficient genealogical search in large databases. For example, large
consumer-facing population databases hosting millions of individuals’ haplotypes typically have a
constant burden of maintaining the population haplotype data structure in order to serve to report
real-time genealogical search results. We believe that d-PBWT provides a practical solution for
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maintaining the population haplotype data structure. Our insertion and deletion algorithms can be
implemented to handle high-volume updates in a real-time fashion. Meanwhile, the performance of
genealogical search queries can be guaranteed by efficient long match query algorithms.

Notably, all three long match algorithms, including L-PBWT-query in Naseri et al. [5] and the
Algorithms 3 and 7 presented here, achieve average case time complexity independent to database
size. The only differences are their worst case time complexity, the number of sweeps required,
and the memory needed for holding the additional auxiliary data structures. While in practice the
optimal algorithm of choice may be a trade off of these and other factors, we believe Algorithm 7
provides a reasonable balance, as it only takes one sweep, with average linear time independent to
panel size, and no additional memory for LEAP arrays.

Moreover, d-PBWT and our algorithms open new research avenues for developing efficient
genotype imputation and phasing algorithms. Current practices of imputation and phasing are
mainly based on a fixed reference panel. With d-PBWT, individual’s haplotypes in the reference
panel can be iteratively refined, offering improved results.
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Appendices

A Time Complexity of Durbin’s Algorithm 5

x0 0 1 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0

x1 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0

x2 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 0
. . .
. . .
. . .

xM−3 0 1 1 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 0

xM−2 0 1 1 1 0 1 0 1 1 0 1 0 0 1 0 1 0 0 0 0 0

xM−1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0
.
.

z 0 1 0 1 0 1 0 1 1 0 1 0 0 1 1 0 1 1 1 0 1

Fig. 5. An example haplotype panel and z that causes Durbin’s algorithm 5 to run in ω(N + c) time.

Durbin claims “The while loop in f ′ or g′ is inevitable because it only takes as many iterations
as there are matches to report the next time f ′ = g′” [2]. However, this is false. Figure 5 shows a
possible haplotype panel that causes Durbin’s algorithm to run in ω(N + c) time. (All sequences
between x2 and xM−3 match with x0 at [0, 15).) Therefore, at k = 13, Algorithm 5 will output
xM−1 as a set maximal match at [0, 13) and the f ′ and g′ loops will be entered to find the new
block. The new block will have M − 1 sequences in it {x0 → xM−2}. However, only one of these
sequences will be outputted as a set maximal match (xM−3 at [3, 20)). Therefore, the number of
times the f ′ and g′ while loops are entered is not bound by c (number of matches) and Algorithm
5 is not O(N + c). Of course, we have empirical evidence of the average case O(N + c) performance
of Durbin’s Algorithm 5 [5].

B Proofs

B.1 Insertion

Lemma 1. zk.d ≤ zk+1.d and zk.below.d ≤ zk+1.below.d

Proof. If zk+1.d > k, then zk.d ≤ zk+1.d because zk.d ≤ k. Same for zk+1.below.d and zk.below.d.
The relative order of sequences that have the same value at site k is the same in column k and

k + 1.
If zk+1.d ≤ k and zk+1.below.d ≤ k, then zk[k] = zk+1.above[k] = zk+1.below[k]. Therefore the

relative order of zk+1, zk+1.above, and zk+1.below is the same in column k as it was in k + 1, i.e.,
zk.above is somewhere above zk and zk.below is somewhere below zk.

If there is a sequence above zk that matches longer than zk+1.above, it will be directly above
z and zk.d < zk+1.d. If there is no sequence above zk that matches longer than zk+1.above, then
zk+1.above will be directly above zk and zk.d = zk+1.d. Therefore zk.d ≤ zk+1.d

If there is a sequence below zk that matches longer than zk+1.below, it will be directly be-
low z and zk.d < zk+1.d. If there is no sequence below zk that matches longer than zk+1.below,
then zk+1.below will be directly below zk and zk.below.d = zk+1.below.d. Therefore zk.below.d ≤
zk+1.below.d ut
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B.2 Set Maximal Match

Lemma 2. min(zk.d, belowzk.d) < min(zk+1.d, belowzk+1.d) iff z’s locally maximal matches ending
at k are set maximal.

Proof. Assume min(zk.d, belowzk.d) < min(zk+1.d, belowzk+1.d) and

∃ sequence s and d1 < min(zk.d, belowzk.d) s.t. s[d1, k) = z[d1, k).

Then the local maximally matching sequence to z is not adjacent to it at k or the divergence values
are incorrect (contradiction). Therefore there does not exist a sequence that has a match with z
that extends this match to the left.

Assume min(zk.d, belowzk.d) < min(zk+1.d, belowzk+1.d) and

∃ sequence s and k1 > k s.t. s[min(zk.d, belowzk.d), k1) = z[min(zk.d, belowzk.d), k1).

Then min(zk.d, belowzk.d) = min(zk+1.d, belowzk+1.d) (contradiction). Therefore there does not
exist a sequence that has a match with z that extends this match to the right.

Therefore there is no sequence that can extend this match and this match is locally maximal.
So min(zk.d, belowzk.d) < min(zk+1.d, belowzk+1.d) =⇒ z’s locally maximal matches ending at k
are set maximal.

Assume z has a set maximal match at [d2, k) and d2 = min(zk.d, belowzk.d) = min(zk+1.d, belowzk+1.d)
then there is a match at [d2, k + 1) and the [d2, k) match can be extended. Therefore it is not
set maximal (contradiction). We have already shown that the divergence at k ≤ divergence at
k + 1 in Lemma 1. Therefore z’s locally maximal matches ending at k are set maximal =⇒
min(zk.d, belowzk.d) < min(zk+1.d, belowzk+1.d).

Therefore min(zk.d, belowzk.d) < min(zk+1.d, belowzk+1.d) ⇐⇒ z’s locally maximal matches
ending at k are set maximal. ut

B.3 Long Match

Lemma 3. fL
k .w(z[k]) = fL+1

k+1 and gLk .w(z[k]) = gL+1
k+1

Proof. All the sequences that match with z length L + 1 or longer until k + 1 all match with z
length L or longer until k,i.e., the set of sequences that match with z length L + 1 until k + 1 is a
subset of the set of sequences that match with z length L or longer until k. Specifically, it is the
subset that has the same value at k as z.

fL
k .w(z[k]) gives us the (node in column k+1 of the) first sequence after fL

k (inclusive) that has
z[k] at position k. This is the first sequence in the L

k block that has z[k] at k. Since relative order
of sequences with the same value is preserved, this will be the first sequence of the L+1

k+1 block.

gLk .w(z[k]) gives us the (node in column k+ 1 of the) first sequence after gLk (inclusive) that has
z[k] at position k. This is the first sequence outside of the L

k block that has z[k] at k. Since relative
order of sequences with the same value is preserved, this will be the first sequence after the L+1

k+1

block.

Therefore fL
k .w(z[k]) = fL+1

k+1 and gLk .w(z[k]) = gL+1
k+1 . ut

C Deletion and Conversion Pseudocode
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Algorithm 4: Deletion: Delete sequence xi from d-PBWT

s0 = first node of sequence xi;
l0 = first node of sequence xM−1;
for k = 0→ N do

sk+1 = sk.w(s[k]);
lk+1 = lk.w(l[k]);
lk.sequenceID = i;
sk.below.d = max(sk.d, sk.below.d);
temp = sk.above;
while temp[k] 6= s[k] do

temp.w(s[k]) = sk.below.w(s[k]);
temp = temp.above;

xi[k] = xM−1[k]; // update dynamic haplotype panel

delete sk from linked list;

M −−;

Algorithm 5: Conversion1: Converts d-PBWT into an array PBWT

Make arrays aN,M , dN,M , uN,M , and vN,M ;
for j = 0→ N do

temp = top node of column j;
for i = 0→M − 1 do

aj [i] = temp.sequenceID;
dj [i] = temp.d;
uj [i] = temp.u.sequenceID;
vj [i] = temp.v.sequenceID;
temp = temp.below;

// Convert dynamic array haplotype panel into regular array haplotype panel

Algorithm 6: Conversion2: Converts PBWT into d-PBWT

// make column N, store array indexed by i with pointer to node of xi in column N
for j = N − 1→ 0 do

new node n;
top node of column j = n;
for i = 0→M − 1 do

n.sequenceID = aj [i];
n.d = dj [i];
n.u = nodePointer[uj [i]];
n.v = nodePointer[vj [i]];
newnodePointer[n.sequenceID] = n;
above = n;
new node n;
above.below = n;
n.above = above;

nodePointer = newnodePointer;

// Convert array haplotype panel into dynamic array haplotype panel
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D Single Sweep Long Match Query Pseudocode

Algorithm 7: Single Sweep Long Match Query: Find long matches between z and se-
quences in d-PBWT in average case O(N) time and one sweep

ef0 = eg0 = gL0 = fL
0 = t0 = top node of column 0;

for k = 0→ N − 1 do
// calculate ek+1

ef ′ = efk.w(z[k]);
eg′ = egk.w(z[k]);
if ef ′ 6= eg′ then

e′ = ek;
else

e′ = ef ′.d− 1;
if z[e′] = 0 then

ef ′ = ef ′.above;
while z[e′ − 1] = ef ′[e′ − 1] do e′ −−;
while ef ′.d ≤ e′ do ef ′ = ef ′.above;

else
while z[e′ − 1] = eg′[e′ − 1] do e′ −−;
eg′ = eg′.below;
while eg′.d ≤ e′ do eg′ = eg′.below;

efk+1 = ef ′, egk+1 = eg′, ek+1 = e′;

// Long Match Query

tk+1 = tk.w(z[k]);

ftemp = fL
k .w(opposite of z[k]);

gtemp = gLk .w(opposite of z[k]);

f ′ = fL
k .w(z[k]) ; // here f ′ = fL+1

k+1

g′ = gLk .w(z[k]) ; // here g′ = gL+1
k+1

while ftemp 6= gtemp do // output matches longer than L that ended at k

output match at [dZ[ftemp.sequenceID],k) between ftemp.sequenceID and z;
ftemp = ftemp.below

if f ′ = g′ then // case where {fL+1
k+1 , g

L+1
k+1 } block is empty

if k + 1− ek+1 = L then
if zk+1[tk+1.d− 1] = 0 then

f ′ = f ′.above;
dZ[f ′.sequenceID] = k + 1− L;

else
dZ[g′.sequenceID] = k + 1− L;
g′ = g′.below;

if f ′ 6= g′ then // expand boundaries of block if not empty

while f ′.d ≤ k + 1− L do
f ′ = f ′.above;
dZ[f ′.sequenceID] = k + 1− L;

while g′.d ≤ k + 1− L do
dZ[g′.sequenceID] = k + 1− L;
g′ = g′.below;

// now that boundaries were expanded, f ′ = fL
k+1 and g′ = gLk+1

fL
k+1 = f ′;

gLk+1 = g′;
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	d-PBWT: dynamic positional Burrows-Wheeler transform

