
Efficient and accurate inference of microbial trajectories from

longitudinal count data

Tyler A. Joseph∗1, Amey P. Pasarkar1, and Itsik Pe’er∗1,2,3

1Department of Computer Science, Columbia University, New York NY, USA
2Department of Systems Biology, Columbia University, New York NY, USA

3Data Science Institute, Columbia University, New York NY, USA

Abstract

The recently completed second phase of the Human Microbiome Project has highlighted the
relationship between dynamic changes in the microbiome and disease, motivating new micro-
biome study designs based on longitudinal sampling. Yet, analysis of such data is hindered by
presence of technical noise, high dimensionality, and data sparsity. To address these challenges,
we propose LUMINATE (LongitUdinal Microbiome INference And zero deTEction), a fast and
accurate method for inferring relative abundances from noisy read count data. We demonstrate
on synthetic data that LUMINATE is orders of magnitude faster than current approaches, with
better or similar accuracy. This translates to feasibility of analyzing data at the requisite di-
mensionality for current studies. We further show that LUMINATE can accurately distinguish
biological zeros, when a taxon is absent from the community, from technical zeros, when a taxon
is below the detection threshold. We conclude by demonstrating the utility of LUMINATE for
downstream analysis by using estimates of latent relative abundances to fit the parameters of a
dynamical system, leading to more accurate predictions of community dynamics.
Code availability: https://github.com/tyjo/luminate
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1 Introduction

The human body is home to trillions of microbial cells that play an essential role in health and
disease5. The gut microbiome, for instance, encodes over 3 million genes20 responsible for a variety
of normal physiological processes such as the regulation of immune response and breakdown of
xenobiotics6. Disturbances in gut communities have been associated with several diseases, notably
obesity17 and colitis18, and changes to the vaginal microbiome during pregnancy is associated with
risk of preterm birth7. Consequently, investigating the human microbiome can provide insight into
biological processes and the etiology of disease.

A major paradigm for microbiome studies design uses targeted amplicon sequencing of the
16S rRNA gene to produce read counts of each bacterial taxon in a sample16. Due to its low cost
(compared to shotgun metagenomics), 16S rDNA sequencing is a valuable tool for generating coarse-
grained profiles of microbial communities. Nonetheless, analysis of 16S datasets faces multiple
domain-specific challenges. First, 16S datasets are inherently compositional12: they only contain
information about the relative proportions of taxa in a sample. In addition, technical noise, such
as uneven amplification during PCR, can produce read counts that differ substantially from the
underlying community structure16. In particular, species near the detection threshold may fail to
appear in a sample, necessitating a distinction between a biological zero — where a species is absent
in the community — from a technical zero where it drops below the detection threshold1. Finally,
the number of taxa and time points in a sample may be large, requiring methods that scale to high
dimensional data.

Increasingly, study designs based on 16S rDNA sequencing have incorporated longitudinal sam-
pling. This is exemplified by a major aim of the second phase of the Human Microbiome Project19

being quantification of dynamic changes in the microbiome across disease-specific cohorts. Longitu-
dinal sampling holds promise in elucidating causality between temporal changes in the microbiome
and disease. It further provides a unique opportunity to address the statistical challenges of 16S
sequencing by pooling information across longitudinal samples.

To this end, two recent methods have been proposed for analyzing noisy longitudinal count
data: TGP-CODA1 and MALLARDs22. TGP-CODA fits a Gaussian process model to longitudinal
count data, providing estimates of denoised (latent) relative abundances and statistical correction
for technical zeros. MALLARDs, dynamic linear models with multinomial observations, fit a state
space model to count data to partition observed variation into biological and technical components.
Both models highlight the importance of temporal modeling, and its utility in providing insight
into microbial systems. However, efficient inference from time-series data is a challenging problem,
and both methods have difficulty scaling with sample size and taxa.

1.1 Our contribution

We propose LUMINATE (LongitUdinal Microbiome INference And zero deTEction), an accurate
and efficient method to infer relative abundances from microbial count data. Our contribution is
two-fold. First, using variational inference we reformulate the problem of posterior inference in a
state-space model as an optimization problem with special structure. Second, we propose a novel
approach to differentiate between biological zeros and technical zeros.

We demonstrate on synthetic data that LUMINATE accurately reconstructs community trajec-
tories orders of magnitude faster than current approaches. We further demonstrate LUMINATE’s
ability to accurately distinguish biological zeros from technical zeros. Finally, we demonstrate
the utility of LUMINATE by using estimated relative abundances to infer the parameters of a
dynamical system, leading to more accurate predictions of community trajectories.
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2 Methods

2.1 Probabilistic Model of Latent Variables
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Figure 1: Graphical model for 4 time points.
Sequencing counts yt are determined by noisy rel-
ative abundances pt, which themselves are deter-
mined by the taxa alive at time t, wt, and noisy
realizations zt of the true community state xt.

Methods for inference from time-series data
are often formulated using state-space models.
State-space models describe latent dynamics as
a sequence of time-indexed random vectors, xt,
where xt is dependent on time points in the
past. Information about the hidden state of the
system is obtained through noisy observation of
each time point yt. Such models are well suited
for describing microbial dynamics: xt contain
information about the true — hidden — rela-
tive abundances, while yt are noisy sequencing
reads. Furthermore, state-space models pro-
vide a flexible framework for more sophisticated
modeling that better captures the data gener-
ating process. We include two additional vari-
ables important for modeling microbial count
data: wt which describes extinction and recol-
onization of taxa, and zt which incorporates an
additional layer of sequencing noise(Figure 1).

Specifically, our model is as follows. Suppose we have a sample with T observed time points.
Let yt ∈ ND0 be the sequencing reads among D taxa at time t, and let xt ∈ RD−1 be the additive
log ratio of the relative abundances of those taxa (the natural parameters of the multinomial
distribution). The time between observations t − 1 and t is denoted ∆t. Further, let zt ∈ RD−1
be variables that represent noisy realizations of xt, and let wt = (w1

t , w
2
t , ..., w

D
t ) ∈ {0, 1}D be

indicator variables denoting which taxa are alive at time point t (i.e. wdt = 1 if taxa d is alive at
time t, 0 otherwise). Our model is given by:

p(wd1 = 1) = πi d = 1...D

p(wdt = j|wdt−1 = i) = Adij d = 1...D, t = 1...T

p(x1) = N (x1|0, Q0)

p(xt) = N (xt|xt−1,∆tQ) t = 1...T

p(zdt |xdt , wdt ) =
(
N (zdt |xdt , rd)

)wd
t

t = 1...T

pt ≡
1

wDt +
∑D−1

d=1 w
d
t e
zdt

(
w1
t e
z1t , ..., wD−1t ez

D−1
t , wDt

)
t = 1...T

p(yt|zt,wt) = Multinomial(yt|Nt,pt) t = 1...T

The zt describe additional sequencing noise not captured by the multinomial distribution. The
multinomial distribution makes a strong assumption that the technical variance is purely due to
otherwise uniform statistical sampling. The wd

1:T constitute a hidden Markov model with transi-
tion probabilities {Adij}i,j∈{0,1} describing the extinction and reintroduction of certain taxa, dis-

tinguishing biological from technical zeros. Setting wdt = 0 removes the contribution of zdt from
the likelihood, and zeros out the relevant proportions in the multinomial counts. Conceptually the
w1:T approximate extinction and recolonization events by making them orthogonal to the state of
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the system. Finally, the xt serve as a prior over the space of dynamics. The change in the system
between time points depends on the covariance between ratios of taxa Q, and the time between
observations ∆t. By learning the posterior x1:T |y1:T , we can estimate relative abundances from
sequencing counts through x1:T .

The covariance Q implicitly makes the assumptions that trajectories are smooth in time. How-
ever external perturbations such as antibiotics can rapidly induce changes in the community. We
model these changes by introducing a perturbation covariance Qp that replaces Q for time points
with known (i.e. provided as input) perturbations.

Our model is conceptually similar to TGP-CODA1 and MALLARDs22. Both models introduce
variables analogous to zt for technical noise, but take different approaches to modeling dynamics
that come with increased computational cost. MALLARDs use a similar state-space model (that
describes dynamics under a phylogenetically motivated log-ratio transformation). However, MAL-
LARDs require evenly spaced time points — each time point occurs after a fixed interval of time.
After specifying a unit of time, time points without observations are integrated out computationally
using a Kalman filtering/smoothing approach. Additionally, MALLARDs do not incorporate terms
for biological zeros as we do here. TGP-CODA, in contrast, incorporates additional variables for
technical zeros similar to wt, but not true zeros which we claim the wt represent. Furthermore,
TGP-CODA learns a state-space covariance matrix using a Gaussian process model. This increased
flexibility comes at a considerable computational burden.

2.2 Inference

Our main contribution is the demonstration that inference under such state-space models can be
performed quickly using variational inference without loss of accuracy. By inference, we mean
two things: posterior inference where the goal is to compute the posterior p(x1:T , z1:T ,w1:T |y1:T ),
and parameter inference for the model parameters A1:D, Q, and r1:D−1. Variational inference
transforms both inference problems to an optimization problem by approximating the true posterior
pθ(·|y) with model parameters θ by a variational posterior qν(·|y) with variational parameters ν.
The parameters (θ, ν) are optimized to minimize the Kullback-Leibler divergence, or equivalently
maximize the “evidence lower-bound”, between the true and approximate posterior. The variational
objective function is

L(y1:T , θ, ν) = Eq[log p(w1:T ,x1:T , z1:T ,y1:T )]− Eq[log q(w1:T ,x1:T , z1:T )]

The main challenge in designing an inference algorithm for variational inference is choosing a form
for q that is capable of closely approximating the true posterior while maintaining the ability to
compute the expectations in L (while black-box approaches exist where the expectations in L
are not explicitly computed, a closed form inference procedure is more desirable). Assuming a
particular factorization of q and optimizing parameters using coordinate ascent, it is sometimes
possible to compute an optimal parametric form for q for that also gives the optimal ν (see Blei et
al.3 for a derivation).

A common choice of factorization is to partition model variables into independent subsets

q(w1:T ,x1:T , z1:T ) =

[
D∏
d=1

q(wd
1:T )

]
q(x1:T )q(z1:T ).

For this choice of factorization, the optimal q(wd
1:T ) and q(x1:T ) can be computed in closed form

using block coordinate ascent (which we will show), while we need to make a choice for the para-
metric form of q(z1:T ). A sensible choice for q(zdt ) = N (ztd|ηdt , γd). The ηdt and γd are variational
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parameters that are optimized with respect to L. The joint distribution across z1:T is

q(z1:T ) = N (z1:T |η1:T ,Γ)

where Γ is a diagonal covariance matrix with entries in {γ1, ..., γD−1}. Given this choice of q(z1:T )
the optimal choice of q’s for q(x1:T ) and q(wd

1:T ) are given by3

q(x1:T ) ∝ exp {E−x1:T [log p(w1:T ,x1:T , z1:T ,y1:T )]}
∝ exp {E−x1:T [log p(x1:T , z1:T )]}

q(wd
1:T ) ∝ exp

{
E−wi

1:T
[log p(w1:T ,x1:T , z1:T ,y1:T )]

}
∝ p(wi1:T ) exp

{
E−wi

1:T
[log p(x1:T , z1:T ,y1:T |w1:T )]

}
where the expectations are computed with respect to all q except for the variable of interest. We
devote the remainder of this section to demonstrating that these can be computed efficiently in
closed form.

First, the joint distribution of p(x1:T ) = N (0,Λ−1) is Gaussian with precision matrix Λ that is
block tridiagional. The simplest way to see this is to note that a Gaussian density is equivalent to
its Laplace approximation. Hence, Λ is given by

Λ =


Λ1,1 Λ1,2

ΛT1,2 Λ2,2 Λ2,t

. . .
. . .

. . .

ΛTT−2,T−1 ΛT−1,T−1 ΛT−1,T
ΛTT−1,T ΛT,T


−Λt,t =

∂2

∂x2
t

[log p(xt+1|xt) + log p(xt|xt−1)]

−Λt,t+1 =
∂2

∂xt+1xt
[log p(xt+1|xt) + log p(xt|xt−1)]

Simplifying q(x1:T ) ∝ exp {E−x1:T [log p(x1:T , z1:T )]} leaves us with q(x1:T ) = N (x1:T |µ1:T ,Σ)
where Σ and µ1:T are given by

Σ = (Λ−1 + Γ−1)−1 (1)

Γ−1η1:T = Σ−1µ1:T (2)

Notably, if we’re only interested the posterior means µ1:T , we never need to explicitly compute the
entire posterior covariance Σ. Σ−1 is block tridiagonal, which means its inverse can be computed
in O(TD3) time instead of O(T 3D3) time13. Furthermore, the solution for µ1:T only relies on the
diagonal blocks of Σ−1 and an intermediate computation from the inverse. Consequentially, µ1:T

can be computed in O(TD2) after the inverse is computed, instead of O(T 2D2).
Simplifying the expression for q(wd

1:T ), reveals that the optimal q(wd
1:T ) is given by

q(wi1:T ) ∝ p(wi1:T ) exp
{
E−wi

1:T
[log p(x1:T , z1:T ,y1:T |w1:T )]

}
This is precisely the posterior under a hidden Markov model with (now fixed) observations given by
the exponential term. Moreover, the only terms we need to compute L are q(wit) and q(wit, w

i
t−1),
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which can be computed in O(4T ) time using the standard forward-backward equations for hidden
Markov models (HMMs)2.

Finally, the update for the parameters of q(z1:T ) cannot be computed in closed form due to
the structure of the problem. We instead rely on a conjugate gradient algorithm to optimize η1:T
(since η1:T does not rely on the variance terms γd we choose not to optimize γd).

The only remaining difficulty is computing

Eq[log p(yt|zt, wt)] =

D−1∑
d=1

ydt Eq[wdt ]Eq[zdt ]− Eq

[
Nt log

(
wDt +

D−1∑
d=1

wdt e
zdt

)]
+ const

≥
D−1∑
d=1

ydt Eq[wdt ]Eq[zdt ]−Nt log

(
Eq[wDt ] +

D−1∑
d=1

Eq[wdt ]Eq[ez
d
t ]

)
+ const

in L. This lower bound on Eq[log p(yt|zt, wt)] bounds the objective L by below, which we note
maintains a valid variational inference algorithm.

Once q has been formulated, optimizing model parameters A1:D, Q, r1:D−1 are straightforward.
The expectations in L can all be computed (using the lower bound above), and taking the gradient
with respect to each parameter and setting equal to zero obtain a closed form for each.

In summary, we have derived an inference algorithm for the model parameters and variational
parameters of our model, where we can compute closed form block coordinate ascent updates for
all but one set of parameters. Moreover, we can compute such updates efficiently by exploiting
the special structure of the covariance of the state-space. Thus, we are left with the following
algorithm.

Data: Sequencing counts y1:T
while A1:D, r1:D−1, Q,µ1:T ,η1:T have not converged do

Update q(x1:T ) using equations 1 & 2;

Update q(wdt ) and q(wdt , w
d
t−1) using the forward-backward equations for HMMs;

Update η1:T using a conjugate gradient algorithm;
Update model parameters A1:D, Q, r1:D−1 (all in closed form);

end

Algorithm 1: LUMINATE’s inference algorithm

2.3 Simulation evaluation

We designed simulations to evaluate our model’s ability to infer relative abundances from noisy
sequencing data. To this end, we downloaded two dense longitudinal datasets of bacterial concen-
trations from Bucci et al.4: i) a dataset of 5 gnotobiotic mice colonized with a bacterial mixture
of 16 species (the C. diff dataset), and ii) a dataset of 7 germ-free mice colonized with a mixture
of 17 Clostridia strains (the Diet dataset). The C. diff dataset mice were subject to a C. difficile
challenge after 28 days (average 26 observed time points observed over 56 days). The Diet dataset
mice were fed a high-fiber diet for 5 weeks, switched to a low fiber diet for 2 weeks, then returned
to the high-fiber diet for 2 weeks (average 47.14 observed time points across 65 days). We used
these datasets to learn the parameters of a generalized Lotka-Volterra model (gLV)26. We chose
to simulate trajectories using gLV because gLV has been shown to accurately describe microbial
dynamics in some cases, in particular on the datasets we used to generate model parameters (see
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Stein et al. 26 or Bucci et al. 4).

d

dt
log xi(t) = gi +

D∑
j=1

Aijxj(t) +
P∑
p=1

Bipup(t) (3)

The xi(t) denote the concentration of bacteria i at time t, and the up(t) denote external per-
turbations (such as introduction of C. difficle and change in diet). The parameters gi, Aij , and
Bip describe growth rates, interactions, and external effects respectively. We fit equation (3) by
discretizing it and performing least squares with elastic net regularization, similar to Stein et al.26.

Once we learned the model parameters for each dataset, we then forward simulated trajectories
for each dataset given initial conditions of each mouse using the Runge-Kutta 5(4) method of
numerical integration as implemented in RK45 from SciPy14. This generated evenly spaced time
points whose number corresponded to the number of observed time points of each mouse. We
qualitatively inspected the simulated trajectories to ensure they matched the ground truth dynamics
in the original data.

We simulated sequencing counts on top of each ground truth trajectory under varying levels of
sequencing noise, following the framework of Silverman et al. 22 . Briefly, given temporal covariance
Q and noise covariance R, they defined a signal-to-noise ratio as the total variance of Q over the
total variance of R

SNR =
Tr(Q)

Tr(R)

We computed the SNR under the additive log-ratio transformation: alr(xi(t)) = log (xi(t)/xD(t)),
using alr(x(t)) = (alr(x1(t)), ..., alr(xD−1(t)) to compute the a diagonal covariance matrix Q of the
state-space give by alr(x(t)). The diagonal entries of Q measure how quickly each taxon alr(xi(t))
changes over time. For fixed Q and fixed SNR, we set R = diag{r1, ..., rD−1} where ri = qi

SNR.
Thus, the sequencing noise was proportional to the variability of each taxa.

Finally, we simulated sequencing reads for each time point from the following model

zt ∼ N (alr(xt), R)

logMt ∼ N (log 10000, 0.5)

logNt ∼ Poisson(Mt)

pt =
1

1 +
∑D−1

d=1 e
zdt

(
ez

1
t , ..., ez

D−1
t , 1

)
yt ∼ Multinomial(Nt,pt)

Intuitively, this means the average sequencing depth is approximately 10000 reads. The log-normal
Poisson distribution on the number of sequencing reads Nt increases the variance in depth across
samples, to better match the high variance of sequencing depth found in real data.

Importantly, all models we evaluated (see Section 2.5) make the same or more general assump-
tions about technical noise, and none assume gLV dynamics. Äijö et al. 1 assume a model equivalent
to noise under the additive log-ratio transformation with additional noise from technical zeros, prior
to observed sequencing counts. Silverman et al. 22 assume noisy realizations occur under the isomet-
ric log-ratio transformation (ilr). The ilr is a linear combination of the alr, and therefore simulating
under the alr is equivalent to ilr under a linear transformation of the covariance matrix.

2.4 Biological zero detection simulations

To determine the ability of our model to detect biological zeros from technical zeros, we simulated
4 taxa across 30 days under gLV with carefully chosen parameters. We picked parameters such that
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one taxon would go extinct during the simulation, while forcing another taxon to remain near the
detection threshold. The remaining 2 taxa were abundant throughout the simulation. This resulted
in an approximately 2-to-1 ratio of true zeros versus technical zeros. We trained our model across
10 datasets of 10 longitudinal samples each, and for each observed zero computed the posterior
probability that it was a biological zero: q(wdt = 0).

2.5 Model comparison

We downloaded the code for TGP-CODA from GitHub 11 . As TGP-CODA only runs on a single
sample at once, we ran it on each sample in each dataset individually using the default parameters,
then combined the results. We estimated latent relative abundances by taking the mean of the
posterior samples of variables ΘG computing using the No-U-Turn Sampler (NUTS) in PyStan24.

We downloaded the code for the MALLARD model from GitHub 10 , and extracted the code
that performed posterior inference under their model in RStan25. Because the MALLARD im-
plementation is not a complete software package, we needed to perform two modifications to the
code to run on our simulated data. First, we used the canonical basis instead of the phylogenetic
basis for the isometric log-ratio transformation. This results in no loss of generality because it only
affects the interpretation of the coordinates of the state-space. Second, we changed how samples for
MCMC were initialized. The original implementation used RStan’s black box variational inference
algorithm to compute initial samples before running the NUTS sampler. However, RStan’s black
box variational inference can fail unexpectedly, so we resorted to initializing samples using RStan’s
default initialization. We estimated relative abundances by transforming posterior samples of θ to
relative abundances, then taking the mean.

2.6 Utility for downstream analysis

We used estimated relative abundances from LUMINATE to fit the parameters of “compositional”
Lotka-Volterra (cLV)15, a nonlinear dynamical system describing microbial relative abundances we
recently proposed. cLV uses the following model to describe changes in relative abundances across
D over time:

d

dt
log

(
πi(t)

πD(t)

)
= gi +

D∑
j=1

Aijπj(t) +

P∑
p=1

Bipup(t) for i = 1...D − 1 (4)

The πi(t) give the relative abundance of taxon i at time t, gi its relative growth rate, Aij the relative
interactions between taxa, and Bip the effect of external perturbations. We learned the parameters
Aij , Bip, gi by discretizing (4) and performing least squares with elastic net regularization, trained
on the πi(t) estimated by LUMINATE. Regularization parameters were chosen using leave-one-out
cross validation, picking parameters with the lowest prediction error from initial conditions.

We compared LUMINATE + cLV to two other time-series models: the sparse autoregressive
model (sVAR) proposed by Gibbons et al. 8 and the ARIMA-Poisson model proposed by Ridenhour
et al. 21 . We download sVAR from GitHub 9 , and ARIMA-Poisson from the supplementary material
in Ridenhour et al. 21 . We fit both models following the methods from each respective paper:
ARIMA-Poisson was fit with 1 time lag, sVAR was fit with 3 time lags. We further rarefied OTU
counts to 10,000 reads for sVAR following Gibbons et al. 8 .

We compared model performance on two datasets by predicting trajectories from initial con-
ditions on test data. The first dataset was the C. diff dataset described above (the Diet dataset
included concentrations only). We also used a dataset of 6 white-throated woodrats fed oxalate

8

.CC-BY-NC 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.10.902163doi: bioRxiv preprint 

https://doi.org/10.1101/2020.01.10.902163
http://creativecommons.org/licenses/by-nc/4.0/


C. diff
SNR = 0.5

C. diff
SNR = 1

C. diff
SNR = 2

C. diff
SNR = 4

Diet
SNR = 0.5

Diet
SNR = 1

Diet
SNR = 2

Diet
SNR = 4

Dataset

0.0

0.2

0.4

0.6

0.8

1.0
M

ea
n 

r2  
P

er
 T

ax
on

***
***

**

***
**
**

***
**
**

***
**
**

**
ns

**

**
ns

*

**
*
**

**
*
nsA

Dirichlet Multinomial
MALLARD
TGP-CODA
LUMINATE

2 Days 3 Days 4 Days
Dataset

*
*
**

ns
***
***

ns
***

**B

Figure 2: LUMINATE accurately recapitulates relative abundance trajectories. (A)
Mean r2 (y-axis) between ground truth and estimated relative abundances trajectories for each
taxon. Equally spaced time points were simulated under generalized Lotka-Volterra with param-
eters learned from two real datasets (C. diff and Diet) with varying signal-to-noise ratio (SNR;
x-axis). (b) Effect of sampling time on estimated trajectories under the Diet simulations with
SNR=4. (Wilcoxon signed-rank test; ns: not significant; ∗ : p < 0.05; ∗∗ : p < 0.01; ∗∗∗ : p < 0.001).

from Ridenhour et al. 21 . Using leave one-out cross validation, we predicted community trajectories
on held out samples using model parameters learned on the remaining data.

3 Results

3.1 Simulations to assess the accuracy of LUMINATE

We first evaluated how well LUMINATE reconstructed (latent) community trajectories under vary-
ing amounts of sequencing noise. We generated ground truth trajectories by simulating data under
generalized Lotka-Volterra (gLV) using parameters learned from real data (see Methods), then sim-
ulated noisy sequencing counts on top of each ground truth trajectory with varying signal-to-noise
ratio and time between observations. We evaluated LUMINATE in comparison to three other
models: i) a Dirichlet-Multinomial model (i.e a pseudocount model), ii) TGP-CODA1, and iii) the
specific MALLARD model from Silverman et al. 22 . Performance was compared by computing the
mean r2 between true and estimated trajectory for each taxon across longitudinal samples. This
beneficially treats rare and common taxa on an equal scale.

Encouraging, LUMINATE had a significantly higher r2 (p ¡ 0.05; Wilcoxon-signed rank test)
than the Dirichlet-Multinomial model across all 8 of our simulations with evenly spaced time points
(Figure 2A). We further observed significantly higher r2 in 6 of 8 simulations when compared with
the MALLARD model, and on 7 out of 8 simulations when compared with TGP-CODA. Impor-
tantly, LUMINATE performed no worse than the competing models across any of the simulations
we investigated. Taken altogether, this suggests that LUMINATE is better recreating the latent
community dynamics.
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Figure 4: LUMINATE accurately discrim-
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AUC-ROC curve using the posterior probabil-
ity of a biological zero as a predictor for biolog-
ical zeros on 10 simulated datasets. (TP: True
Positives; TN: True Negatives)

Real microbiome datasets tend to be sparse in time. We therefore performed simulations to
investigate sensitivity to technical frequency. We simulated data under learned parameters from
C. diff data, and removed time points so that there was an observation every 2, 3, and 4 days on
average. Notably, LUMINATE was robust to the sparser simulations (Figure 2B), outperforming
TGP-CODA and the MALLARD model on all three simulations.

3.2 Simulations to assess the efficiency of LUMINATE

Both TGP-CODA and MALLARD models rely on Markov Chain Monte Carlo (MCMC) algorithms
to compute posterior estimates of model variables. As MCMC can be computationally expensive,
we wanted to evaluate how each model scales with increasing number of observed time points and
taxa. We thus simulated a single longitudinal sample varying the number of time points and taxa.

Across all datasets, LUMINATE was faster then the other methods we investigated (Figure 3),
sometimes by more than 2 orders of magnitude. LUMINATE ran in < 1.5 minutes on all datasets.
In contrast, it to the MALLARD model 8.3 hours to run 50 taxa at 10 time points. On this same
dataset it took TGP-CODA 18.28 minutes to run, but 1.7 hours to run on 50 taxa at 30 time
points. In practice, this means that LUMINATE is the only method that can scale to datasets with
multiple longitudinal samples and many observed taxa.

3.3 LUMINATE distinguishes biological zeros from technical zeros

We carefully designed simulations to test LUMINATE’s ability to distinguish biological zeros —
where a taxon is not presenting the community — from technical zeros, where it is below the
detection threshold. Specifically, we simulated data where one taxon goes extinct over the course
of the simulation, while another hovers near the detection threshold. For all zeros in the observed
data, we computed the posterior probability of a biological zero, and evaluated performance by
computing the area under the receiver operating characteristic (AUC-ROC). This measures the
probability of the event that a biological zero receives a higher posterior probability than a technical
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zero, an indicator that the model differentiates between the two. We performed 10 replicates with
10 samples each to estimate confidence intervals for the AUC-ROC. Notably, the mean AUC was
high across all replicates (Figure 4; mean = 0.91, std = 0.04), suggesting that our model accurately
discriminates biological from technical zeros.

3.4 Utility for downstream analysis
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Figure 5: LUMINATE improves down-
stream analysis. Comparison of observed and
predicted trajectories between cLV fit using LU-
MINATE and two other models. The y-axis dis-
plays the difference in error from each model (x-
axis) to LUMINATE + cLV. Significance is com-
puted using the Wilcoxon signed-rank test.

We have demonstrated that LUMINATE ac-
curately estimates relative abundances. These
“denoised” estimates can be useful for down-
stream analysis of longitudinal data. One ex-
ample is learning the parameters of a dynam-
ical system. We recently proposed a nonlin-
ear dynamical system called “compositional”
Lotka-Volterra (cLV) that describes how rela-
tive abundances change over time. However,
learning the parameters of cLV requires esti-
mated relative abundances (as would any other
dynamical system describing relative abun-
dances). We thus asked if LUMINATE could
be useful for fitting nonlinear models of micro-
bial dynamics, and if such a nonlinear model
could lead to better descriptions of the under-
lying dynamics.

We fit cLV using LUMINATE’s estimated
abundances, and used cLV to forecast commu-
nity trajectories from initial conditions. We
compared forecast trajectories to two other
models: ARIMA-Poisson21 and (sVAR)8. For
each model, we computed the average error be-
tween estimated and observed trajectories by taking Euclidean distance (the error) divided by the
number of observed time points. We compared each model to LUMINATE + cLV by looking at
the difference in error between the competing model and LUMINATE + cLV. This difference is
expected to be symmetric around 0 if both models perform equally well (and greater than 0 if
LUMINATE + cLV is performing better).

We observed that LUMINATE + cLV more accurately predicted trajectories than both sVAR
and ARIMA-Poisson (Figure 5). For the sVAR model, this was significant in the Oxalate dataset.
We observed a skew favoring LUMINATE + cLV on the C. diff dataset, but it did not reach
the significance threshold, likely reflecting the smaller sample size (fewer taxa) in this dataset. In
contrast, LUMINATE + cLV significantly outperformed ARIMA-Poisson on both datasets.

4 Discussion

Recent focus on dynamic changes in microbial communities has highlighted the importance of
longitudinal modeling and data collection. Thus, there is an increasing need for methods for
analyzing longitudinal data that are capable of scaling to large datasets spanning many taxa. With
these goals in mind, we have proposed LUMINATE: a method for estimating relative abundances,
and differentiating biological from technical zeros, in longitudinal datasets. We demonstrated
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that LUMINATE runs orders of magnitude faster than the current state of the art without loss
of accuracy, can accurately detect biological zeros, and has utility as a preprocessing step for
downstream analysis such as fitting the parameters of a dynamical system.

Though we emphasized variational inference as a tool to speed up computation, we note that
this is not the only approach. In particular, Silverman et al. 23 propose an efficient algorithm for
posterior inference in models they call marginally latent matrix-t processes, of which MALLARDs
are a special case. However, there is currently no public implementation of MALLARDs in their
framework. Still, MALLARDs do not distinguish biological from technical zeros, a major advantage
of the present work.

There are several promising areas for future work. The true zero detection framework can be
extended to include external perturbations, such as antibiotics, to assess how external factors affect
risk of colonization by pathogenic bacteria. We can further expand our downstream analysis to
learn biological interaction networks among taxa.
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