
Strain-aware assembly of genomes from mixed samples using

variation graphs

Jasmijn A. Baaijens∗, Leen Stougie∗†‡, Alexander Schönhuth∗§‡¶

Abstract

The goal of haplotype-aware genome assembly is to reconstruct all individual haplotypes from
a mixed sample and to provide corresponding abundance estimates. We provide a reference-
genome-independent solution based on the construction of a variation graph, capturing all di-
versity present in the sample. We solve the contig abundance estimation problem and propose
a greedy algorithm to efficiently build maximal-length haplotypes. Finally, we obtain accurate
frequency estimates for the reconstructed haplotypes through linear programming techniques.
Our method outperforms state-of-the-art approaches on viral quasispecies benchmarks and has
the potential to assemble bacterial genomes in a strain-aware manner as well.
Keywords: viral quasispecies, haplotype reconstruction, abundance estimation, variation graph.

Background

Many sequencing data sets contain fragments of several closely related sequences, such as bacterial
mixtures, environmental samples (metagenomics), or mixtures of viral strains, as extracted from
infected hosts (viral quasispecies [1]). High mutation rates affecting the species contained in such
a sample usually yield that a particular species comes as an ensemble of closely related genomes
each of which pertains to a particular strain of the species. Because relevant properties such as
escape from medical treatment or host immune response happen at the strain, and not the species
level [2, 3], one of the current most driving analytical challenges is to reconstruct the individual
genomes present in a such a sample at the strain level. When emphasizing the genetic variation
that characterizes them, these individual genomes are usually referred to as haplotypes. Therefore,
this challenge is more generally also referred to as haplotype-aware genome assembly.

It is further characteristic that the relative abundance (or relative frequency) of the strains
contained in such mixed samples varies across the strains. It is possible that some strains dominate
the sample by their high relative frequency and, as a consequence, mask others that come at low
relative frequency. Also because such low-frequency bacterial or viral strains are often relevant
factors when considering escape from medical treatment or host immune response [2, 3], obtaining
reliable, accurate estimates of the relative abundances of strains can be crucial when analyzing
mixed samples.

In this paper, we present VG-flow, a method for reconstructing genomes at the strain level with
integrated abundance estimation. Because genomes from mixed samples are usually affected by
substantial mutation rates, which can decisively hamper the use of linear reference genomes because

∗Centrum Wiskunde & Informatica, Amsterdam, Netherlands
†Vrije Universiteit, Amsterdam, Netherlands
‡INRIA-Erable
§Utrecht University, Utrecht, Netherlands
¶Corresponding author (alexander.schoenhuth@cwi.nl)

1

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

of the biases they induce when dealing with genetic variation, VG-flow avoids using standard linear
reference genomes altogether. Instead, VG-flow is based on variation graphs as underlying, flexible-
to-construct reference systems that account for haplotype-specific mutations in an unbiased manner.
We construct these variation graphs in a de novo manner, that is, without resorting to any external
means such as a reference genome.

In this, first and foremost, VG-flow presents a comprehensive solution to the de novo viral
quasispecies assembly problem. Thereby, VG-flow comes with significant improvements over earlier
related work presented in the literature. Note that in comparison to bacteria and eukaryotes, viruses
have relatively short genomes, subject to mutation rates that exceed those for bacterial genomes;
this is even more expressed for RNA viruses than for DNA viruses [4]. In particular the shortness
of the genomes simplifies the analysis, and allows for solutions that are specific to reconstructing
viral quasispecies.

Thanks to the computational efficiency of the underlying method, establishing a novelty from
a theoretical point of view, VG-flow also establishes the first solution that can also be applied to
bacterial sized genomes. This points out its potential for applications in metagenomics type settings,
beyond its applicability for strain-aware assembly of virus genomes. Note that reconstructing all
of the individual haplotypes present in a metagenome, that is de novo, strain-aware metagenome
assembly, is challenging also because of various other reasons, all of which require specialized tools
and further methodological progress [5]. In that respect, VG-flow offers an important, and so far
missing building block for a full solution of this problem.

VG-flow takes as input a next-generation sequencing (NGS) data set and a collection of strain-
specific contigs assembled from the data, and produces full-length haplotypes and corresponding
abundance estimates. Our method is centered on estimating contig abundances in a contig-variation
graph, a graph that captures all quasispecies diversity present in the contigs [6, 7]. We build a flow
network to accompany the variation graph and estimate contig abundances by solving a flow-like
optimization problem: variables represent flow values on the edges of the flow network and we
impose flow constraints, while the objective function evaluates the difference between estimated
contig abundances and read coverage for every node in the variation graph. This objective function
is convex, which renders the flow problem polynomial time solvable [8].

The flow solution presents abundance estimates for the input contigs, which are of value in its
own right in various mixed sample applications [9, 10, 11]. We use the contig abundance estimates
in a combination of greedy algorithms to extract candidate haplotypes from the variation graph,
where candidate haplotypes reflect concatenations of subpaths associated with the input contigs.
Finally, we solve an optimization problem whose variables represent the haplotype abundances and
the difference between read coverage and haplotype abundance is minimized over all nodes. Thus,
we obtain a selection of candidate haplotypes that represents the quasispecies, along with haplotype
abundance estimates.

Existing viral quasispecies assemblers include widely evaluated tools like [12, 13, 14], as well
a variety of methods introduced more recently [15, 16, 17, 18, 19, 20]. These methods can be
divided into two classes: reference-guided and reference-free (also referred to as de novo). De
novo approaches do not require any prior information, such as a reference genome or knowledge
of the quasispecies composition. This has been shown to have advantages over reference-guided
reconstruction, since using a reference genome can induce significant biases. Especially at the time
of a viral disease outbreak, an appropriate reference genome may not be available due to high
mutation rates. However, most of the aforelisted tools are reference-guided; only [16], [17], and [19]
present de novo approaches.

Moreover, many of these specialized viral quasispecies assemblers aim at single gene recon-
struction, rather than whole genome assembly. In [17] we took a first step towards full-length de

2

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

novo viral quasispecies assembly. There, we have shown that de novo haplotype reconstruction
with integrated haplotype abundance estimation yields assemblies that are more complete, more
accurate, and provide better abundance estimates. While this approach is guaranteed to find a
selection of haplotypes that is optimal in terms of being compatible with the read coverages, its
runtime is exponential in the number of contigs. Since the number of contigs generally increases
on increasing genome length, we found [17] unsuitable for genomes larger than ∼ 10 kb. With
VG-flow, we provide a reference-free solution to the full-length viral quasispecies reconstruction
problem that scales well to longer genomes. As another benefit of the theoretical rigorosity of our
problem formulation and efficiency of the solution, we also experience considerable improvements
in terms of accuracy compared to existing tools.

Some of the challenges that have to be dealt with in viral quasispecies assembly can also be found
in RNA transcipt assembly, where the goal is to reconstruct an unknown number of transcripts
and predict the relative transcript abundances. Not surprisingly, many RNA transcipt assemblers
define graph optimization problems similar to our flow formulation [21, 22, 23, 24, 25]. Although
dealing with related problems, these methods cannot be applied in a viral quasispecies setting so
easily: they require a collection of reference genomes representing all possible haplotypes as input,
which is not available in our setting. Nevertheless, the theory behind these approaches is related to
what we do. In [21], node and edge abundance errors are used to define a min-cost flow problem;
note that this formulation does not take subpath constraints into account. On the other hand, [22]
describes how subpath constraints can be incorporated into a minimum path cover formulation.
This results in an optimization problem that is solvable in polynomial time, but does not minimize
node abundance errors. We use the best of both worlds by defining an optimization problem that
takes subpath constraints, minimizes node abundance errors, and is polynomially solvable; this
establishes a theoretical novelty. Because this novelty gives way to different types of analyses in
other settings, and immediately connects to extensively treated theoretical issues [22, 21], we feel
that it is of value also in its own right.

Among more generic assemblers, [26] has been shown to be capable of reconstructing individual
haplotypes from mixed samples, up to a certain degree. This method was designed for bacterial
genomes and scales well to human genomes, but is unable to reconstruct low-frequent haplotypes
[16]. Haplotype-aware assembly of metagenomes is a big challenge, which tends to result in scattered
genome fragments and missing strains [5]. Metagenomic assemblers such as [27, 28, 29, 30] aim
to reconstruct mixtures of viral and bacterial populations at strain level. The contigs obtained
with these methods, or any other assembler, can also be used as input for VG-flow. Although we
emphasize the reconstruction of viral quasispecies, the mathematical framework presented here is
generic and could be applied in other scenarios as well; as such, VG-flow has the potential to make
a big step ahead in haplotype-aware genome assembly in general.

Results

We present VG-flow, a new approach to haplotype aware genome assembly from mixed samples.
This algorithm takes as input a data set of next-generation sequencing reads and a collection of
strain-specific contigs; note that de novo assembly into strain-specific contigs can be performed
using various tools (e.g. [16, 19, 26, 27], depending on the application). The output of VG-flow
consists of maximal length haplotypes along with relative abundance estimates for each of these
sequences. In addition, the algorithm yields abundance estimates for each of the input contigs.

Our approach consists of five steps, as depicted in Figure 1:

(1) We construct a contig variation graph V GC by performing Multiple Sequence Alignment
(MSA) on the input sequences. Node abundances are obtained by mapping sequencing reads

3

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

Contigs + sequencing

 reads

Flow network

Contig

abundances

Candidate

paths

Contig-

variation graph

+ node abundances

Genome-variation graph

+ haplotype abundances

1. Contig-variation graph

 construction

 Multiple sequence alignment & read

 mapping

2. Flow network construction

3. Contig abundance estimation

 Maximum �ow computation

4. Greedy path extraction

5. Path abundance optimization

 Linear programming

1

2

3

4

5

Algorithmic components:
Input

Output

A G T T A T A

A G T A A T A

A T A A T T G

A T A C T T G

T G C C A A T

T G - - A A T

205x 792x

788x 796x

203x 204x

21% 79%

AGT

T

A

ATA AAT

CC

A

C

TTG

AGT

T

A

ATA AAT

CC

A

C

TTG

Figure 1: Algorithm overview

to the variation graph.

(2) We build a flow network FG using V GC .

(3) We define and solve a flow-like optimization problem on FG to obtain contig abundance
estimates.

(4) We generate a set of candidate haplotypes Pcand based on the estimated contig abundances
through multiple greedy heuristics.

(5) We obtain a selection of haplotypes H from Pcand by solving another linear optimization
problem, defined on V GC . The solution to this problem presents estimates for the relative
abundances of all candidate haplotypes in Pcand, thereby eliminating any false haplotypes.

The final output is presented as a genome variation graph V GH capturing the haplotypes in H,
along with the estimated relative abundances.

Steps (1) and (5) are based on the Virus-VG algorithm [17] and are used without further
adjustment. Steps (2), (3) and (4) are entirely novel. They incorporate a new problem formulation,
and based on the solution of this problem, provide a way to estimate contig abundance, as part of an
overall efficient alternative to the exponential brute-force routines from [17]. VG-flow easily scales
to data sets of higher complexity and thus provides a clear view towards haplotype reconstruction
for mixtures of bacterial strains or even metagenomic data. For further details on algorithm design
we refer the reader to the Methods section.

Benchmarking preliminaries

We perform benchmarking experiments where we compare VG-flow to existing methods for full-
length viral quasispecies reconstruction. In these experiments, we make use of the specialized de
novo viral quasipecies assembler SAVAGE [16] for generating a set of strain-specific contigs. We
compare performance of VG-flow to Virus-VG [17], another de novo approach, and to reference-
guided viral quasispecies reconstruction tools PredictHaplo [12] and ShoRAH [13]. More recent viral
quasispecies assemblers aBayesQR [15], QSdpR [18], and PEHaplo [19] focus on reconstruction of
relatively short genomic regions and were unable to process full-length quasispecies data sets at
ultra-deep coverage. We provide the reference-guided methods with a consensus reference genome
obtained by running VICUNA [31] on the data set. This procedure simulates a de novo setting where
the viral agent and its genome may be unknown. Moreover, the consensus reference sequence may

4

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

be a more accurate representation of the data set under consideration than the standard reference
genomes available.

We evaluate all assemblies by comparing the assembled contigs to the ground truth sequences
using QUAST [32]. This assembly evaluation tool aligns the assembled contigs to the true haplo-
types, which are provided as a reference, and calculates several standard evaluation metrics. For
each assembly, we report the number of contigs, percent target genomes covered, N50, NG50, and
error rate. If an assembly consists of only full-length contigs, the number of contigs can be inter-
preted as the estimated number of strains. Target genome coverage is defined as the percentage
of aligned bases in the true haplotypes, where a base is considered aligned if there is at least one
contig with at least one alignment to this base. The N50 and NG50 measures reflect assembly
contiguity. N50 is defined as the length for which all contigs in the assembly of at least this length
together add up to at least half of the total assembly size. NG50 is calculated in a similar fashion,
except that the sum of contig lengths is required to cover at least half of the total target length.
Error rates are equal to the sum of mismatch rate, indel rate, and N-rate (ambiguous bases). We
do not report unaligned bases or misassemblies as we did not encounter any of these.

In addition to the above QUAST assembly metrics, we evaluate strain abundance estimates by
comparing estimated values to true strain abundances. For each assembly, let n be the number
of true strains and let xi, x

′
i denote the estimated and true abundance, respectively, of strain i.

For each ground truth haplotype, the abundance estimates of sequences assigned to this haplotype
were summed to obtain the strain abundance estimate xi. We only evaluate abundances for strains
that are present in the assembly (i.e. xi > 0) since we cannot expect an assembler to estimate the
abundance of a missing strain. Therefore, the true strain abundance values x′i are also normalized,
taking only the assembled sequences into account. Then, we calculate the absolute frequency error
(AFE) and the relative frequency error (RFE) a follows:

AFE =
∑
i∈I

|xi − x′i|
|I|

,

RFE =
∑
i∈I

|xi − x′i|
|I| · x′i

, where

I = {i ∈ [n] : xi > 0}

VG-flow scales well to bacterial size genomes

Our main goal of designing VG-flow was to enable generation of high-quality assemblies for data sets
of higher complexity compared to what is possible with other de novo approaches. While Virus-
VG [17] performs well on the quasispecies benchmarking data sets, the path enumeration step
will quickly become too expensive as data sets become more complex: the number of candidate
haplotypes is exponential in the number of input contigs. In particular, the number of haplotypes
grows exponentially in the genome size, making candidate path enumeration infeasible for larger
haplotypes.

In order to explore the limits of VG-flow and to highlight its advantages over Virus-VG, we
simulated 28 data sets of increasing complexity using SimSeq [33] (2x250 bp paired-end reads,
Illumina MiSeq error profile). We created data sets with genomes of increasing size (2500 bp, 5000
bp, 10.000 bp, 20.000 bp, 40.000 bp, 100.000 bp, 200.000 bp) and an increasing number of strains
(2, 4, 6, 8). Each data set has a total coverage of 1000x. Each strain was created by randomly
introducing mutations at a mutation rate of 0.5% into a randomly generated nucleotide sequence
of the desired length; hence, haplotypes have a pairwise divergence of 1%. For data sets of 2,
4, 6, and 8 strains, the relative strain abundances were set to ratios of 1:2, 1:2:3:4, 1:2:3:4:5:6,

5

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

0 25 50 75 100 125 150 175 200
Genome size (kbp)

0.0

2.5

5.0

7.5

10.0

12.5

15.0

CP
U
tim

e
(h
)

2 strains
4 strains
6 strains
8 strains

Figure 2: VG-flow runtime (CPU seconds) on data sets of increasing
genome size (2500, 5000, 10.000, 20.000, 40.000, 100.000, 200.000)
and number of strains (2, 4, 6, 8). Note that these runtimes do not
include SAVAGE assembly time; a comparison of total runtime is
shown in the Supplementary Material.

and 1:2:3:4:5:6:7:8, respectively. Although the genome sequences are artificial, allowing us to vary
genome size and number of strains flexibly, the relative abundances and pairwise divergence reflect
plausible real-world, and challenging scenarios in metagenomics [5].

In Figure 2 we show VG-flow runtimes as a function of the genome size for a fixed number of
strains. As expected, runtime increases as the genome size and the number of strains increase.
Even the data sets with a genome size of 200.000 bp are easy to process with VG-flow. Virus-VG,
on the other hand, was unable to process any genomes larger than 20.000 bp (2 strains), 5000 bp
(4 strains), or 2500 bp (>4 strains).

Remark. Currently, the limiting factor for processing genomes larger than 200.000 bp with VG-
flow is the pre-assembly step. VG-flow requires pre-assembled strain-specific contigs as input and we
use SAVAGE [16] for this. SAVAGE has proven to produce assemblies of very high quality, but this
assembler does not scale well to large genomes. Inspired by results from [16], we experimented with
SPAdes [26] assemblies as input for VG-flow. Although SPAdes does not produce strain-specific
contigs as well as SAVAGE, it performs reasonably well and VG-flow is able to build full-length
haplotypes from these contigs. Results and further details are shown in the Supplementary Material.

VG-flow outperforms existing tools

We evaluate performance of VG-flow on three simulated viral quasispecies data sets from [17] and
one real HIV benchmark presented in [34], also referred to as the labmix. The simulated data sets
are based on true genomic sequences from the NCBI nucleotide database; the characteristics of
all data sets (virus type, genome size, number of strains, relative strain abundances, and pairwise
divergence) are described in Table 1. All data sets consist of Illumina Miseq reads with an average
sequencing depth of 20.000x. For each data set, including the labmix, the true haplotypes and their
relative abundances are known.

Table 2 presents assembly statistics for all methods on the three simulated data sets (HCV,
ZIKV, and Poliovirus) and Table 3 presents results on the labmix. The de novo approaches VG-
flow and Virus-VG both use the contigs obtained with SAVAGE as input. We observe that both

6

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

Strain Strain Pairwise
Data set Data type Virus type Genome size count abundance divergence

HCV mix Simulated HCV-1a 9273–9311 bp 10 5–19% 6–9%
ZIKV mix Simulated ZIKV 10251–10269 bp 15 2–13% 1–10%
Poliovirus mix Simulated Poliovirus 7428–7460 bp 6 1.6–51% 1.2–7%
Labmix Real HIV-1 9478–9719 bp 5 10–30% 1–6%

Table 1: Quasispecies characteristics of benchmarking data sets. All
data sets consist of Illumina Miseq reads with an average sequencing
depth of 20.000x.

0.0 0.2 0.4 0.6
true abundance

0.0

0.2

0.4

0.6

0.8

1.0

re
la

tiv
e

er
ro

r

Dataset = HCV

0.0 0.2 0.4 0.6
true abundance

0.0

0.5

1.0

1.5

2.0
Dataset = ZIKV

0.0 0.2 0.4 0.6
true abundance

0.0

0.1

0.2

0.3

0.4
Dataset = Poliovirus

Method
PredictHaplo
ShoRAH
Virus-VG
VG-flow

Figure 3: Abundance estimation results per data set. Abundances
were only evaluated for assemblies containing at least 2 full-length
haplotypes.

methods produce full-length haplotypes for all simulated data sets, with much higher assembly
N50 and NG50 values than SAVAGE. The improved assembly contiguity comes with only slightly
higher error rates compared to the SAVAGE contigs. Table 2 shows that VG-flow builds contigs
with even lower error rates than Virus-VG (0.108% versus 0.115% on ZIKV data and 0.036% versus
0.064% on Poliovirus data for VG-flow and Virus-VG, respectively). On the Poliovirus data set we
do not only observe a lower error rate for VG-flow compared to Virus-VG, but also a higher target
coverage (90.2% for VG-flow versus 80.7% for Virus-VG). The frequency estimation errors (AFE
and RFE) in Table 2 show that the increase in assembly accuracy also leads to lower frequency
estimation errors.

On real data (Table 3) we observe that VG-flow produces the same number of contigs as Virus-
VG, leading to identical target coverage and N50 values; the only difference between the assemblies
is a slightly lower NG50 for VG-flow (4608 versus 4642) and a slightly higher error rate (0.535%
versus 0.324%). These differences may be explained by the highly uneven coverage of this data
set, which affects the contig abundance estimation and hence also the greedy path extraction (see
Figure 1). However, the contigs produced by VG-flow are much longer than the input contigs, with
the N50 value more than doubled.

Compared to the state-of-the-art for full-length viral quasispecies reconstruction, we notice
a clear advantage for VG-flow in terms of target coverage and error rate. Table 2 shows that
PredictHaplo and ShoRAH are unable to reconstruct all haplotypes in any of the simulated data
sets. The strains that could be reconstructed have higher error rates than VG-flow, as well as
much higher frequency estimation errors. On the labmix, PredictHaplo and ShoRAH both achieve

7

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

contigs∗ target (%) N50 NG50 ER(%) AFE(%) RFE(%)

SAVAGE 26 99.4 8964 8964 0.001 - -
Virus-VG 10 99.3 9281 9203 0.001 0.1 0.9
VG-flow 10 99.3 9281 9203 0.001 0.0 0.2
PredictHaplo 9 73.8 7636 7608 0.059 0.9 11.3
ShoRAH 639 56.9 7570 7570 4.294 8.5 64

(a) 10-strain HCV mixture

contigs∗ target (%) N50 NG50 ER(%) AFE(%) RFE(%)

SAVAGE 100 98.8 2954 3801 0.023 - -
Virus-VG 20 92.8 10202 10210 0.115 0.3 6.0
VG-flow 21 92.8 10193 10210 0.108 0.3 5.4
PredictHaplo 8 53.3 10270 10267 0.126 4.9 69
ShoRAH 493 26.3 10117 10117 4.392 39 229

(b) 15-strain ZIKV mixture

contigs∗ target (%) N50 NG50 ER(%) AFE(%) RFE(%)

SAVAGE 59 83.7 1089 1643 0.019 - -
Virus-VG 14 80.7 7316 7428 0.064 0.6 12.8
VG-flow 12 90.2 7316 7428 0.036 0.3 3.5
PredictHaplo 3 16.6 7461 - 1.825 - -

(c) 6-strain Poliovirus mixture

Table 2: Assembly results on simulated data (Illumina MiSeq,
20.000x coverage). ER = Error Rate (N’s + mismatches + indels),
AFE = Absolute Frequency Error, RFE = Relative Frequency Er-
ror. Frequency errors were only computed for assemblies containing
at least 2 full-length haplotypes. ∗If contigs are full-length, this num-
ber reflects the estimated number of strains in the quasispecies.

8

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

a target coverage of 100%. In other words, they assemble each of the five HIV strains at full-length.
However, PredictHaplo does so at almost twice the error rate of VG-flow (1.066% for PredictHaplo
versus 0.535% for VG-flow) and the ShoRAH assembly has an even higher error rate of 3.910%.
Moreover, ShoRAH greatly overestimates the number of strains in all data sets considered.

Figure 3 shows the relative frequency estimation errors per method as a function of true abun-
dance per strain, for each of the simulated data sets. Results are divided into bins (binsize=0.05)
and average errors are shown. Figure 3 highlights the advantage of de novo methods VG-flow and
Virus-VG, which have much smaller relative errors than PredictHaplo and ShoRAH. On the HCV
and ZIKV data sets, VG-flow and Virus-VG show nearly identical performance; on the Poliovirus
data, we observe a small advantage for VG-flow.

De novo approaches achieve highest precision and recall

In addition to the standard assembly quality metrics presented in the previous section, we analyze
relevance of the reported solutions and the amount of similarity between true and reconstructed
haplotypes. In the following, we define true positives by their relative edit distance to the corre-
sponding true haplotype (i.e., edit distance divided by alignment length). A contig is considered
a true positive if it aligns to a true haplotype with relative edit distance ≤ α; a haplotype is
considered correctly reconstructed if at least one contig aligns to it with relative edit distance
≤ α. Figure 4 presents precision, recall, and F-measure per data set. These measures evaluate
the number of true positive contigs relative to the total number of contigs (precision), the number
of correctly reconstructed haplotypes relative to the total number of haplotypes (recall), and the
harmonic average of precision and recall (F-measure = 2*precision*recall/(precision+recall)). We
consider various thresholds for the relative edit distance and plot precision, recall, and F-measure
as a function of the threshold α. Each of these measures takes values between 0 and 1, with 0 the
worst possible score and 1 the best possible score.

We observe that, in general, SAVAGE achieves high values for all three measures already at
low relative edit distance. However, SAVAGE only assembles short contigs. VG-flow and Virus-VG
show very similar performance, with slightly better values for VG-flow on the ZIKV and Polio
data sets, and slightly better performance of Virus-VG on the labmix. All other methods are
outperformed by these de novo approaches: PredictHaplo and ShoRAH do not achieve comparable
F-measure scores on the simulated data. On the labmix these methods obtain similar scores only at
an allowed relative edit distance of 4%, which is nearly as high as the maximal pairwise divergence
between strains in this data set.

Runtime and memory usage

The haplotype reconstruction steps used in VG-flow are highly efficient: on the benchmarking data
sets presented in Table 1 we measured a decrease in haplotype reconstruction time of 9.2–92%

contigs∗ target (%) N50 NG50 ER(%)

SAVAGE 68 97.9 1026 1450 0.066
Virus-VG 23 90.6 2130 4642 0.324
VG-flow 23 90.6 2130 4608 0.535
PredictHaplo 6 100.0 8825 8825 1.066
ShoRAH 250 100.0 8775 8775 3.910

Table 3: Assembly results on the labmix (5-strain HIV mixture, real
Illumina MiSeq, 20.000x coverage).

9

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

0.0

0.2

0.4

0.6

0.8

1.0
Pr
ec
isi
on

HCV ZIKV Poliovirus Labmix

0.0

0.2

0.4

0.6

0.8

1.0

Re
ca
ll

0 1 2 3 4 5
max % edit distance

0.0

0.2

0.4

0.6

0.8

1.0

F-
m
ea
su
re

0 1 2 3 4 5
max % edit distance

0 1 2 3 4 5
max % edit distance

0 1 2 3 4 5
max % edit distance

savage
virus-vg
vg-flow
predicthaplo
shorah

Figure 4: Precision, recall, and F-measure per data set.

compared to Virus-VG. However, total runtime for VG-flow is mostly determined by the contig-
variation graph construction step, which involves multiple sequence alignment and read mapping.
This graph construction step is shared by VG-flow and Virus-VG. Hence, when considering the
complete approach on the simulated quasispecies benchmarks, we observe identical runtime and
memory usage for VG-flow and Virus-VG: runtime varies between 3.6–12.5 CPU hours and peak
memory usage is between 0.6–0.9 GB. Both approaches require as input pre-assembled contigs, for
which we used SAVAGE. This de novo assembler constructs an overlap graph from the sequencing
reads, which is a very expensive procedure (30.6–276 CPU hours). In comparison, PredictHaplo is
faster (2.0–7.4 CPU hours) and ShoRAH is slower (209–814 CPU hours, unable to process the po-
liovirus data set). However, it is important to realize that all methods except PredictHaplo are able
to profit from multithreading, leading to competitive wall clock times on sufficiently large comput-
ing clusters. Moreover, constructing a consensus reference genome to be used for reference-guided
methods ShoRAH and PredictHaplo also incurs some additional costs (0.07–0.44 CPU hours). More
details are presented in the Supplementary Material.

Analysis of an HCV patient sample

In order to demonstrate utility of VG-flow on real data, we ran our method on a patient sample
(plasma) of a Hepatitis C virus infection (subtype 1a). This sample is part of a deep sequencing
initiative of HCV genomes [35]. It consists of 349268 reads (2x250 bp, Illumina MiSeq), covering
the HCV reference genome (NC 004102.1) from position 2296 to 7328 with an average sequencing
depth of 34704×. We performed de novo assembly with SAVAGE and obtained 133 contigs varying
in length from 152 to 1238 bp, with an N50 value of 472. After running VG-flow on this set of
contigs, we obtained 33 contigs with an N50 value of 2342. Among the contigs were 7 full-length
haplotypes (>4500 bp), in agreement with the analysis performed by [35] using single genome

10

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

amplification. The estimated relative frequencies varied between 6.0% and 33.3%. Two of the full-
length haplotypes show a large insertion of 573 bp at position 3546 of the HCV reference genome;
this insertion falls into the NS3 gene, which is involved in viral RNA replication through helicase
activity. Overall, the 7 full-length haplotypes have 98.8–99.4% pairwise sequence identity, while
they share only 93.8–94.7% of their sequences with the HCV reference genome. The overall assembly
process took 92 minutes using 12 CPU’s (51 minutes for SAVAGE, 41 minutes for VG-flow) and
used 1.2 GB of RAM.

Discussion

Many genomic data sets contain mixtures of closely related sequences, such as viral quasispecies
or bacterial populations, where the number of haplotypes is generally unknown and relative abun-
dances may differ per haplotype. VG-flow addresses these challenges: we successfully reconstructed
haplotypes from several mixed samples, both simulated and real, and obtained highly accurate fre-
quency estimates for each haplotype.

VG-flow performs full-length haplotype aware genome assembly, without using existing linear
reference genomes, but by constructing variation graphs from pre-assembled contigs. This approach
establishes a reference system that allows for analyses that do not suffer from any kind of haplotype-
specific mutation-induced biases. We compute abundance estimates for the input contigs, which
are of value in its own right. We also enable haplotype reconstruction in polynomial time, with
runtimes depending linearly on genome size in practice. We have shown that VG-flow scales well
to bacterial sized genomes, hence proving its potential to contribute also to metagenomic assembly.
In benchmarking experiments on simulated viral samples, our method outperformed the state-of-
the-art in full-length viral quasispecies reconstruction in terms of assembly completeness, assembly
accuracy, and abundance estimation quality. Finally, we also demonstrated the value of our method
on real HIV and HCV data sets.

In view of general benefits of Virus-VG [17] and the fact that its brute-force solution experiences
severe limitations with respect to genome size and the number of contigs, our main goal was to find
a polynomial time solution producing high quality assemblies like Virus-VG. Our algorithm did
not only achieve decisive speed-ups, but also improved on Virus-VG in terms of assembly accuracy.
Virus-VG and VG-flow both aim to reconstruct individual haplotypes from pre-assembled contigs
and perform abundance estimation, but VG-flow uses a radically different approach to generating
candidate haplotypes. Our results show that the greedy path extraction step in our algorithm
selects a subset of possible haplotypes that represents the quasispecies sufficiently well. By limiting
the path abundance optimization to this subset of haplotypes, many false haplotypes are excluded
from optimization and hence the algorithm gets less confused by false haplotypes.

Interestingly, for some data sets VG-flow was able to improve on the input contigs in terms
of target coverage. A possible explanation is that for haplotypes which are not fully represented
by pre-assembled contigs, VG-flow is able to reuse contigs from other strains in the same region.
This hypothesis is supported by the fact that error rates for VG-flow are higher than for the input
contigs constructed using SAVAGE.

The results in Figure 2 show that VG-flow has the potential to process larger genomes. Cur-
rently, there are two limiting factors that prevent us from processing bacterial or metagenomic
data. First, our method requires as input a collection of pre-assembled, strain-specific contigs. We
obtained best results using SAVAGE [16] to generate these input contigs; however, in its current
state SAVAGE does not scale well to larger genomes. Experiments using SPAdes to generate input
contigs have shown that VG-flow can also generate full-length haplotypes from these assemblies.
In fact, any haplotype aware assembler could be used to generate the input contigs, but the quality
of the input contigs has a significant impact on the quality of the output.

11

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

Another limiting factor is that VG-flow depends on multiple sequence alignment for constructing
the contig variation graph. This step can become quite expensive as the number of contigs grows,
which could lead to difficulties when processing metagenomic data sets. Nevertheless, we have
moved to a much wider range of feasible genome sizes than what was possible before. Note finally,
that variation graph construction is part of a current, very active area of research, such that
improvements on that end are to be expected [36, 6, 7].

Note that each of these factors imposes the same limitations to the approach in [17]. Addressing
these challenges would make VG-flow truly capable of processing bacterial or metagenomic data.
Therefore, each of the points discussed above provides an interesting starting point for future work.

Conclusions

While multiple approaches to reference-free viral quasispecies assembly have been introduced re-
cently, efficient reconstruction of full-length haplotypes without using a reference genome is a major
challenge. Although de novo methods have shown advantages over reference-guided tools, the re-
sulting assemblies often consist of rather short contigs. In this paper, we have proposed VG-flow
as an efficient solution to extend pre-assembled contigs into full-length haplotypes, based on varia-
tion graphs as reference systems that allow for a bias-free consideration of all haplotypes involved.
Benchmarking experiments have shown that VG-flow outperforms the state-of-the-art in viral qua-
sispecies reconstruction in terms of accuracy of haplotype sequences as well as abundance estimates.
Moreover, we have shown that our method scales well to bacterial sized genomes, thus proving its
potential for processing larger data sets like bacterial mixtures or metagenomic data.

Methods

Variation graphs

Variation graphs are mathematical structures that capture genetic variation between haplotypes
in a population [6, 7]. These graphs provide a compact representation of a collection of input
sequences by collapsing all shared subsequences between haplotypes.
Definition. Let S be a collection of sequences. We define the variation graph V G(S) as a tuple
(V,E, P, a). The nodes v ∈ V store sequences seq(v) of nucleotides (of arbitrary length) which
appear as a substring of some s ∈ S. The edges (v1, v2) ∈ E indicate that the concatenation
seq(v1)seq(v2) also appears as a substring of some s ∈ S. In addition to nodes V and edges E, a
variation graph stores a set of paths P representing the input sequences: for every s ∈ S there is
a path p ∈ P (i.e. a list of nodes, linked by edges) such that the concatenation of node sequences
equals s. Finally, we store path abundances using an abundance function a : P → R which assigns
an absolute abundance value to each path in P .
Approach. Following [17], we distinguish between two types of variation graphs: contig-variation
graphs and genome-variation graphs. Let C be a set of pre-assembled contigs and let H be the col-
lection of haplotypes we aim to reconstruct. The contig-variation graph V G(C) = (VC , EC , PC , aC)
organizes the genetic variation that is present in the input contigs and the abundance function
aC gives contig abundance values for every input contig. The genome-variation graph V G(H) =
(VH , EH , PH , aH) stores the haplotypes within a population and the abundance function computes
haplotype abundances. Constructing a genome-variation graph is the goal of our method; the key
idea is to use the contig-variation graph to get there.

Contig-variation graph construction

We construct a contig-variation graph from pre-assembled contigs C using existing techniques for
variation graph construction, similar to [17]. This entails three steps:

12

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

(1) Multiple sequence alignment (MSA). We run vg msga [7] on the input contigs; the resulting
MSA is represented as a graph (V,E, P).

(2) Compactification. We compactify the graph by contracting any non-branching path into a
single node. For every contig, we update the corresponding path p ∈ P such that it stores
the path through the compacted variation graph. Thus, we obtain a graph (VC , EC , PC).

(3) Node abundance computation. We use vg map [7] to align the sequencing reads to the com-
pacted variation graph. From these alignments we compute the average base coverage for
every node in the graph, also referred to as the node abundance.

Note that the computed node abundances do not yet give us the abundance function aC : PC → R.
To complete the construction of V G(C), we construct a flow network and solve a minimum-cost
flow problem as described below.

Flow network construction

We construct a flow network FG = (V,E, c, d), which allows us to compute contig abundances by
solving a variant of the minimum-cost flow problem. Network flows are defined on directed graphs,
where every edge has a given capacity and receives a certain amount of flow [37]. A flow network
has a source node and a sink node, which have only incoming and outgoing flow, respectively.
For all other nodes, the amount of incoming flow must always equal the amount of outgoing flow,
so-called flow conservation. We define our graph as follows.
Nodes. We start by creating a source s and a sink t. Then, we introduce two vertices for every
contig ci ∈ C, thus obtaining the vertex set V = {s, t} ∪ {v−i , v

+
i | ci ∈ C}.

Edges. We introduce directed edges (arcs) of three types: contig-arcs, overlap-arcs, and auxiliary-
arcs. For each contig ci we add a contig-arc ei : v−i → v+i . For each pair of contigs ci and cj there
is an overlap-arc eij from vertex v+i to vertex v−j if a suffix of ci has a non-conflicting overlap with
a prefix of cj . In other words, the sequences of ci and cj are identical on their overlap. Finally,
we add auxiliary-arcs s → v−i for any v−i which has no incoming overlap-arcs, and auxiliary-arcs
v+i → t for any v+i which has no outgoing overlap-arcs.
Capacities. All edges have infinite capacity.
Costs. To every edge e ∈ E, we assign a cost de where

de =

1, for contig-arcs;
−1, for overlap-arcs;

0, for auxiliary-arcs.

The intuition behind this construction is that haplotypes can be found as s − t paths in FG
and flow along the edges reflects accumulated haplotype abundances. The edge costs in the flow
network allow for the definition of a minimum-cost flow problem that computes contig abundances
that are optimal in terms of being compatible with the node abundances in the contig-variation
graph, as described in the next section. The construction of the flow network is illustrated in
Figure 5.

Contig abundance computation

The problem of estimating contig abundances has applications in metagenomics [38] and RNA
transcript assembly [39]. Existing methods make use of read mapping, either to a reference genome
[9] or to the contigs [10, 11]. Such techniques may cause ambiguous alignments when contigs overlap
or share identical sequence. Here, we avoid these issues by mapping reads to the contig-variation
graph and solving a flow-like optimization problem.

13

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

s t

contig-arc

overlap-arc

auxiliary-arc

+ +- - +-

+- +- +-

Figure 5: Flow network construction: source (s), sink (t), vertices
(v−i , v

+
i), contig-arcs, overlap-arcs, and auxiliary-arcs.

Problem formulation. Candidate haplotypes in the contig-variation graph V GC can be
obtained by concatenating overlapping contig subpaths. Therefore, any maximal length path in
the variation graph corresponds to an s-t path in FG. We denote by δ+(v) and δ−(v) the set of
arcs, respectively, entering and leaving v ∈ V . Recall that VC denotes the set of nodes in V GC and
let a′u denote the abundance of node u ∈ VC , as computed from the read alignments. For a node
u ∈ VC and edge e ∈ E, we write u ∈ e if the contig (or overlap) associated with the contig-arc
(or overlap-arc) passes through node u in the contig-variation graph. We define the following flow
problem, in which the variables xe decide the amount of flow going through arc e ∈ E:

min
∑

u∈VC |a
′
u −

∑
{e∈E|u∈e} dexe| (1)

s.t.
∑

e∈δ+(v) xe =
∑

e∈δ−(v) xe, ∀v ∈ V \ {s, t}
xe ≥ 0, ∀e ∈ E.

Motivation. The objective function evaluates the node abundance errors, defined as the
absolute difference of the node abundance and the sum of contig abundance estimates of all contigs
whose path passes through the node under consideration. However, contigs belonging to the same
haplotype may have overlaps due to conserved regions between haplotypes; we need to avoid double-
counting the contig abundances for nodes corresponding to such overlaps. The edge costs de ensure
that for any pair of overlapping contigs, for any node u ∈ VC in the overlap, the estimated abundance
is only added to the sum once.

Solution. The objective function is convex in the flow-variables xe (Supplementary Material,
Lemma 3.1), so we have the problem of minimizing a convex function over a set of linear constraints.
Such problems can be solved in polynomial time [8]. Given a solution to this optimization problem,
the flow values on the contig-arcs reflect contig abundance estimates. We use these values to define
the abundance function aC on the contig-variation graph. An evaluation of abundance estimates
for all simulated data sets is presented in the Supplementary Material. Below, we explain how to
use these contig abundances to extract candidate haplotypes for further optimization.

Greedy path extraction

The outcome of the above algorithm gives us a flow value for each edge in the flow network. In the
biological context of the problem, we are interested in a decomposition of this flow into a set of s-t
paths representing the reconstructed haplotypes. Finding such a flow decomposition can be done in
polynomial time, as follows from any constructive proof of the Flow Decomposition Theorem [37].
In general, we are interested in a parsimonious solution; that is, a solution with a small number of
paths. Finding a decomposition with a minimal number of paths, however, is NP-complete. Many
approximation algorithms have been developed for finding a minimum path flow decomposition,
e.g. [40, 41], but these algorithms could not even handle our smallest data set (a mixture of 2
haplotypes of length 2500 bp). Therefore, we resort to other, more efficient means for obtaining a
set of haplotypes from the given flow solution [42].

We consider a generic greedy heuristic to obtain a selection of candidate paths (Algorithm 1).
This approach iteratively selects an s − t path p from the flow network, then updates the flow

14

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

solution by subtracting the largest possible flow on contig-arcs in p. It terminates when all flow
on contig-arcs is below a user-defined threshold for the minimal haplotype abundance. The order
in which paths are selected depends on the optimality criterion: we consider maximum capacity
paths, minimum capacity paths, and shortest paths—this essentially gives rise to three heuristics.
Note that we do not take the flow values on overlap-arcs or auxiliary-arcs into account, because we
want to avoid any preliminary restrictions on the contig overlaps used.

Algorithm 1 Greedy path extraction given a flow solution

Input: flow network FG, contig-arcs E′, flow solution x, min abundance m, optimality criterion
Output: a selection of candidate paths Pcand

1: function GreedyPaths(FG,E′, x,m, opt)
2: R ← x
3: Pcand ← ∅
4: FGR ← FG
5: while FGR has at least one s− t path do
6: Find an s− t path p in FGR that is optimal w.r.t. opt
7: w ← mine∈p∩E′{Re}
8: R ← R− wp
9: FGR ← FG \ {e ∈ E′ : Re < m}

10: Pcand ← Pcand ∪ {p}
11: return Pcand

It varies per data set which optimality criterion gives best results: the maximal capacity crite-
rion extracts paths in order of decreasing abundance, hence leads to paths which are most reliable.
However, if a sample contains low-frequency strains, it can be beneficial to select haplotypes in
order of increasing abundance (minimum capacity). Since we do not know the composition of
the quasispecies beforehand, we combine the results of all three heuristics into one set of candi-
date haplotypes for further optimization. Earlier work has shown that merging a pool of high
quality approximations allows for efficient solutions to well-known optimization problems [43, 44].
We compare performance of our combined approach and the individual greedy heuristics in the
Supplementary Material.

Path abundance optimization

Given a collection of candidate haplotypes Pcand in the form of paths through the contig-variation
graph, the only task remaining is to compute relative abundances for these haplotypes. Although
the greedy path extraction algorithm produces preliminary path abundance estimates, these can
be improved by the following linear programming approach, also described in [17].

Problem formulation. Let a′v denote the abundance of node v ∈ VC , which was computed
from the read alignments to V GC . We define variables xp ∈ R≥0 for p ∈ Pcand, representing the
estimated abundance for haplotype p, and consider the following optimization problem:

min
∑
v∈VC

∣∣∣a′v −∑
p3v

xp

∣∣∣ s.t. xp ≥ 0 ∀ p ∈ Pcand. (2)

The objective function is similar in spirit to the objective in Equation (1), where abundance es-
timation errors are evaluated per node in the contig-variation graph. Only now, we compute the
absolute difference between the node abundance value and the sum of abundance estimates for all
haplotypes passing through this node. This is a convex programming formulation, which can be
linearized and solved using an LP solver.

15

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

Genome-variation graph construction

Given the candidate haplotypes Pcand and the abundance estimates xp for p ∈ Pcand, we obtain
a final selection of haplotypes H = {p ∈ Pcand : xp ≥ m}. Here, m is a user-defined minimal
path abundance, by default set to 1% of total sequencing depth. Given H, we can transform the
contig-variation graph V GC into the genome-variation graph V GH , a complete representation of
the viral quasispecies.

Data simulation

All synthetic data sets were generated using the software SimSeq [33] to simulate Illumina MiSeq
reads from the genome of interest. In order to obtain realistic sequencing error profiles, we used
the MiSeq error profile provided with the software. The genomes used for each data set are listed
in the Supplementary Material.

Abbreviations

bp: Base pair
MSA: Multiple sequence alignment
HCV: Hepatitis C virus
ZIKV: Zika virus
HIV: Human immunodeficiency virus
ER: Error rate
RFE: Relative frequency error
AFE: Absolute frequency error

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

Software and analysis scripts are publicly available at https://bitbucket.org/jbaaijens/vg-flow.
The synthetic benchmarking datasets analysed during the current study are available at https:

//bitbucket.org/jbaaijens/savage-benchmarks. The real HIV data (labmix) is available at
https://github.com/cbg-ethz/5-virus-mix. The real HCV data are available in the Sequenc-
ing Read Archive under accession number SRR3951347.

Competing interests

The authors declare that they have no competing interests.

Funding

This work was supported by the Netherlands Organisation for Scientific Research (NWO) through
Vidi grant 679.072.309 and Gravitation Programme Networks 024.002.003.

Authors’ contributions

JAB and LS designed the algorithmic components. JAB and AS designed the experiments. JAB
implemented the software and performed experiments. JAB wrote the manuscript, with the help
of LS and AS. All authors read and approved the manuscript.

16

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://bitbucket.org/jbaaijens/vg-flow
https://bitbucket.org/jbaaijens/savage-benchmarks
https://bitbucket.org/jbaaijens/savage-benchmarks
https://github.com/cbg-ethz/5-virus-mix
https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

Acknowledgements

Not applicable.

References

[1] E. Domingo, J. Sheldon, and C. Perales. Viral quasispecies evolution. Microbiology and
Molecular Biology Reviews, 76(2):159–216, Jun 2012.

[2] S. Crotty, C.E. Cameron, and R. Andino. RNA virus error catastrophe: direct molecular test
by using ribavirin. Proceedings of the National Academy of Sciences, 98(12):6895–6900, 2001.

[3] M. Vignuzzi, J.K. Stone, J.J. Arnold, C.E. Cameron, and R. Andino. Quasispecies diver-
sity determines pathogenesis through cooperative interactions in a viral population. Nature,
439:344–348, 2006.

[4] S. Duffy. Why are RNA virus mutation rates so damn high? PLOS Biology, 16(8):1–6, 08
2018.

[5] A. Sczyrba, Peter Hofmann, Peter Belmann, David Koslicki, Stefan Janssen, Johannes Dröge,
Ivan Gregor, Stephan Majda, and A. McHardy. Critical assessment of metagenome interpre-
tation - a benchmark of metagenomics software. Nature Methods, 14:1063–1071, 2017.

[6] B. Paten, A.M. Novak, J.M. Eizenga, and E. Garrison. Genome graphs and the evolution of
genome inference. Genome Research, 27(5):665–676, 2017.

[7] E. Garrison, J. Sirén, A.M Novak, G. Hickey, J.M. Eizenga, E.T. Dawson, W. Jones, S. Garg,
C. Markello, M.F. Lin, B. Paten, and R. Durbin. Variation graph toolkit improves read
mapping by representing genetic variation in the reference. Nature Biotechnology, 36:875–879,
2018.

[8] Y. Nesterov and A. Nemirovskii. Interior-point polynomial algorithms in convex programming,
volume 13. SIAM, 1994.

[9] M.S. Lindner and B.Y. Renard. Metagenomic abundance estimation and diagnostic testing on
species level. Nucleic Acids Research, 41(1):e10, 2012.

[10] M. Fischer, B. Strauch, and B.Y. Renard. Abundance estimation and differential testing on
strain level in metagenomics data. Bioinformatics, 33(14):i124–i132, 2017.

[11] N.L. Bray, H. Pimentel, P. Melsted, and L. Pachter. Near-optimal probabilistic RNA-seq
quantification. Nature Biotechnology, 34:525–527, 2016.

[12] S. Prabhakaran, M. Rey, O. Zagordi, N. Beerenwinkel, and V. Roth. HIV haplotype inference
using a propagating dirichlet process mixture model. IEEE Transactions on Computational
Biology and Bioinformatics, 11(1):182–191, 2014.

[13] O. Zagordi, A. Bhattacharya, N. Eriksson, and N. Beerenwinkel. ShoRAH: estimating the ge-
netic diversity of a mixed sample from next-generation sequencing data. BMC Bioinformatics,
12(1):119, 2011.

[14] M.C.F. Prosperi and M. Salemi. QuRe: software for viral quasispecies reconstruction from
next-generation sequencing data. Bioinformatics, 28(1):132–133, Jan 2012.

17

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

[15] S. Ahn and H. Vikalo. aBayesQR: A bayesian method for reconstruction of viral populations
characterized by low diversity. Journal of Computational Biology, 25(7):637–648, 2018.

[16] J.A. Baaijens, A. Zine El Aabidine, E. Rivals, and A Schönhuth. De novo assembly of viral
quasispecies using overlap graphs. Genome Research, 27(5):835–848, 2017.

[17] J.A. Baaijens, B. van der Roest, J. Köster, L. Stougie, and A. Schönhuth. Full-length de novo
viral quasispecies assembly through variation graph construction. Bioinformatics, to appear,
2019.

[18] S. Barik, S. Das, and H. Vikalo. Qsdpr: Viral quasispecies reconstruction via correlation
clustering. Genomics, 110(6):375 – 381, 2018.

[19] J. Chen, Y. Zhao, and Y. Sun. De novo haplotype reconstruction in viral quasispecies using
paired-end read guided path finding. Bioinformatics, 34(17):2927–2935, 2018.

[20] S. Knyazev, V. Tsyvina, A. Melnyk, A. Artyomenko, T. Malygina, Y.B. Porozov, E. Campbell,
W.M. Switzer, P. Skums, and A. Zelikovsky. CliqueSNV: Scalable reconstruction of intra-host
viral populations from NGS reads. bioRxiv:10.1101/264242, 2018.

[21] A.I. Tomescu, A. Kuosmanen, R. Rizzi, and V. Mäkinen. A novel min-cost flow method for
estimating transcript expression with RNA-seq. BMC Bioinformatics, 14(5):S15, Apr 2013.

[22] R. Rizzi, A.I. Tomescu, and V. Mäkinen. On the complexity of minimum path cover with
subpath constraints for multi-assembly. BMC Bioinformatics, 15(9):S5, 2014.

[23] E. Bernard, L. Jacob, J. Mairal, and J. Vert. Efficient RNA isoform identification and quan-
tification from RNA-seq data with network flows. Bioinformatics, 30(17):2447–2455, 2014.

[24] M. Pertea, G.M. Pertea, C.M. Antonescu, T. Chang, J.T. Mendell, and S.L. Salzberg. StringTie
enables improved reconstruction of a transcriptome from RNA-seq reads. Nature Biotechnology,
33:290–295, 2015.

[25] C. Trapnell, B.A. Williams, G. Pertea, A. Mortazavi, G. Kwan, M.J. van Baren, S.L. Salzberg,
B.J. Wold, and L. Pachter. Transcript assembly and quantification by RNA-seq reveals unan-
notated transcripts and isoform switching during cell differentiation. Nature Biotechnology,
28:511–515, 2010.

[26] A. Bankevich, S. Nurk, D. Antipov, A.A. Gurevich, M. Dvorkin, A.S. Kulikov, V.M. Lesin, S.I.
Nikolenko, S. Pham, A.D. Prijbelski, A.V. Pyshkin, A.V. Sirotkin, N. Vyahni, G. Tesler, P.A.
Pevzner, and M.A. Alekseyev. SPAdes: A new genome assembly algorithm and its applications
to single-cell sequencing. Journal of Computational Biology, 19(5):455–477, 2012.

[27] S. Nurk, D. Meleshko, A. Korobeynikov, and P.A. Pevzner. metaSPAdes: a new versatile
metagenomic assembler. Genome Research, 27(5):824–834, 2017.

[28] S. Boisvert, F. Raymond, E. Godzaridis, F. Laviolette, and J. Corbeil. Ray meta: scalable de
novo metagenome assembly and profiling. Genome Biology, 13(12):R122, 2012.

[29] Y. Peng, H.C. Leung, S.M. Yiu, and F.Y. Chin. Meta-IDBA: a de novo assembler for metage-
nomic data. Bioinformatics, 27(13):i94–i101, 2012.

18

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

[30] Dinghua Li, Chi-Man Liu, Ruibang Luo, Kunihiko Sadakane, and Tak-Wah Lam. MEGAHIT:
an ultra-fast single-node solution for large and complex metagenomics assembly via succinct
de Bruijn graph. Bioinformatics, 31(10):1674–1676, 01 2015.

[31] X. Yang, P. Charlebois, S. Gnerre, M. Coole, N. Lennon, J. Levin, J. Qu, E. Ryan, M. Zody,
and M. Henn. De novo assembly of highly diverse viral populations. BMC Genomics, 13(1):475,
2012.

[32] A. Gurevich, V. Saveliev, N. Vyahhi, and G. Tesler. QUAST: quality assessment tool for
genome assemblies. Bioinformatics, 29(8):1072–1075, 2013.

[33] John St. John. An illumina paired-end and mate-pair short read simulator, 2014.

[34] F. Di Giallonardo, A. Töpfer, M. Rey, S. Prabhakaran, Y. Duport, C. Leemann, S. Schmutz,
N.K. Campbell, B. Joos, M.R. Lecca, A. Patrignani, M. Däumer, C. Beisel, P. Rusert,
A. Trkola, H.F. Günthard, V. Roth, N. Beerenwinkel, and K.J. Metzner. Full-length hap-
lotype reconstruction to infer the structure of heterogeneous virus populations. Nucleic Acids
Research, 42:e115, 2014.

[35] D.L. Hedegaard, Damien C. Tully, Ian A. Rowe, Gary M. Reynolds, David J. Bean, Ke Hu,
Christopher Davis, Annika Wilhelm, Karen A. Ogilvie, Colin B.and Power, Alexander W.
Tarr, Deirdre Kelly, Todd M. Allen, Peter Balfe, and Jane A. McKeating. High resolution
sequencing of hepatitis C virus reveals limited intra-hepatic compartmentalization in end-stage
liver disease. Journal of Hepatology, 66(1):28–38, 2017.

[36] T. Marschall, M. Marz, T. Abeel, L. Dijkstra, B.E. Dutilh, A. Ghaffaari, P. Kersey, W.P.
Kloosterman, V. Mkinen, A.M. Novak, B. Paten, D. Porubsky, E. Rivals, C. Alkan, J.A.
Baaijens, P.I.W. De Bakker, K. Ye, and A. Schönhuth. Computational pan-genomics: status,
promises and challenges. Briefings in Bioinformatics, 19(1):118–135, 2018.

[37] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1993.

[38] H. Li. Microbiome, metagenomics, and high-dimensional compositional data analysis. Annual
Review of Statistics and Its Application, 2(1):73–94, 2015.

[39] Ana Conesa, Pedro Madrigal, Sonia Tarazona, David Gomez-Cabrero, Alejandra Cervera,
Andrew McPherson, Micha l Wojciech Szcześniak, Daniel J. Gaffney, Laura L. Elo, Xuegong
Zhang, and Ali Mortazavi. A survey of best practices for RNA-seq data analysis. Genome
Biology, 17:13, 2016.

[40] M. Shao and C. Kingsford. Theory and a heuristic for the minimum path flow decomposition
problem. IEEE/ACM Transactions on Computational Biology and Bioinformatics, PP(99):1–
1, 2017.

[41] K. Kloster, P. Kuinke, M.P. O’Brien, F. Reidl, F. Sánchez Villaamil, B.D. Sullivan, and
A. van der Poel. A practical fpt algorithm for flow decomposition and transcript assembly.
CoRR, abs/1706.07851, 2017.

[42] B. Vatinlen, F. Chauvet, P. Chrtienne, and P. Mahey. Simple bounds and greedy algorithms
for decomposing a flow into a minimal set of paths. European Journal of Operational Research,
185(3):1390–1401, 2008. cited By 19.

19

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

[43] William Cook and Paul Seymour. Tour merging via branch-decomposition. INFORMS Journal
on Computing, 15(3):233–248, 2003.

[44] T. Bosman. A solution merging heuristic for the steiner problem in graphs using tree decom-
positions. In Evripidis Bampis, editor, Experimental Algorithms, pages 391–402, Cham, 2015.
Springer International Publishing.

20

.CC-BY-ND 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/645721doi: bioRxiv preprint

https://doi.org/10.1101/645721
http://creativecommons.org/licenses/by-nd/4.0/

