
AStarix: Fast and Optimal
Sequence-to-Graph Alignment

Pesho Ivanov, Benjamin Bichsel, Harun Mustafa,
André Kahles, Gunnar Rätsch, and Martin Vechev

Department of Computer Science,
ETH Zurich, Switzerland

{firstname.lastname}@inf.ethz.ch

Abstract. We present an algorithm for the optimal alignment of se-
quences to genome graphs. It works by phrasing the edit distance mini-
mization task as finding a shortest path on an implicit alignment graph.
To find a shortest path, we instantiate the A? paradigm with a novel
domain-specific heuristic function that accounts for the upcoming sub-
sequence in the query to be aligned, resulting in a provably optimal
alignment algorithm called AStarix.
Experimental evaluation of AStarix shows that it is 1–2 orders of mag-
nitude faster than state-of-the-art optimal algorithms on the task of
aligning Illumina reads to reference genome graphs. Implementations and
evaluations are available at https://github.com/eth-sri/astarix.

Keywords: Next-generation sequencing · Optimal alignment · Genome
graph · Shortest path · A? algorithm

1 Introduction

The analysis and understanding of genetic variation encoded in the genome
of an organism lies at the center of computational biology and medicine. Varia-
tion is usually identified through matching sequences obtained from DNA/RNA-
sequencing back to a reference (genome) sequence in the process of variant call-
ing, making the alignment task a core problem in sequence bioinformatics.

Historically, a single linear reference sequence has been used to represent the
most common variants in a population. While providing a working abstraction
for most cases, rare or sub-population specific variation is especially hard to
model in this setting, creating a reference allele bias [35,4]. Consequently, in
the last few years, the field has shifted first towards using sets of reference
sequences, and more recently to graph data structures (so-called genome graphs),
to represent many genomes or haplotypes simultaneously [7,25,9].

Both for sequence-to-sequence alignment and sequence-to-graph alignment,
heuristics are employed to keep alignment tractable [2,21,9], especially for large
populations of human-sized genomes. While such heuristics find the correct align-
ment for simple references, they often perform poorly in regions of very high
complexity, such as in the human major histocompatibility complex (MHC) [7],

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://github.com/eth-sri/astarix
https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

2 P. Ivanov et al.

in complex but rare genotypes arising from somatic-subclones in tumor sequenc-
ing data [10], or in the presence of frequent sequencing errors [29]. Importantly,
these cases can be of specific clinical or biological interest, and incorrect align-
ment can cause severe biases for downstream analyses. For instance, the com-
bination of high variability of MHC sequences in humans and small differences
between alleles [5] leads to a risk of misclassifications due to suboptimal align-
ment. Guaranteeing optimal alignment against all variations represented in a
graph is a major step towards alleviating those biases.

Formally, we consider the optimal sequence-to-graph alignment problem, the
task of finding an optimal base-to-base correspondence between a query sequence
and a (possibly cyclic) walk in the graph. Related alignment problems have
already been formulated as graph shortest path problems [3,16].

1.1 Related Work

Seed-and-Extend. Since optimal alignment is often intractable, many align-
ers use heuristics, most commonly the seed-and-extend paradigm [2,21,22]. In
this approach, alignment initiation sites (seeds) are determined, which are then
extended to form the alignments of the query sequence. The fundamental is-
sue with this approach, however, is that the seeding and extension phases are
mostly decoupled during alignment. Thus, an algorithm with a provably opti-
mal extension phase may not result in optimal alignments due to the selection
of a suboptimal seed in the first phase. In cases of high sequence variability, the
seeding phase may even fail to find an appropriate seed from which to extend.

Accounting for Variation. First attempts to include variation into the ref-
erence data structure were made by augmenting the local alignment method to
consider alternative walks during the extend step [30,17]. This approach has since
been extended from the linear reference case to graph references. To represent
non-reference variation of multiple references during the seeding stage, HISAT2
uses generalized compressed suffix arrays [33] to index walks in an augmented
reference sequence, forming a local genome graph [19]. VG [9] uses a similar
technique [32] to index variation graphs representing a population of references.

BrownieAligner, another recent work developed for local alignment of se-
quences to de Bruijn graph representations of genomic variation, features an
optimal extension phase using a branch-and-bound-based early cutoff, while em-
ploying a heuristic maximal-exact-match approach for seeding [11].

Optimal Alignment. Current optimal sequence-to-graph alignment algorithms
reach their worst-case O(nm) runtime [16]. In this light, approaches for im-
proving the efficiency of optimal alignment have taken advantage of special-
ized features of modern CPUs to improve the practical runtime of the Smith-
Waterman dynamic programming (DP) algorithm [34] considering all possible
starting nodes. These use modern SIMD instructions (e.g. vg [9] and PaS-
GAL [15]) or reformulations of edit distance computation to allow for bit-parallel

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

AStarix: Fast and Optimal Sequence-to-Graph Alignment 3

computations in GraphAligner1 [27]. Many of these, however, are designed
only for specific types of genome graphs, such as de Bruijn graphs [24,11,23]
and variation graphs [9]. A compromise often made when aligning sequences to
cyclic graphs using algorithms reliant on directed acyclic graphs involves the
computationally expensive “DAG-ification” of graph regions [18,9].

A? algorithm. We aim to guarantee optimal alignment while optimizing the
average runtime to not reach its worst case complexity. While Dijkstra is an
algorithm that explores graph nodes in the order of their distance from the start,
A? is a generalization of Dijkstra that also accounts for their distance from the
target. A? prioritizes the exploration of nodes that seem to be closer to the target
nodes. This way, A? can sometimes dramatically improve on the performance of
Dijkstra while remaining optimal.

There has been one attempt to apply A? for optimal alignment [8] which uses
a heuristic function that accounts only for the length of the remaining query se-
quence to be aligned. However, it does not significantly outperform Dijkstra (in
fact, it is equivalent for a zero matching cost). In contrast, the heuristic function
we introduce is more informative and consistently outperforms Dijkstra.

1.2 Main Contributions

We introduce a novel approach, called AStarix, for optimal sequence-to-graph
alignment based on A?. As with any A? instantiation, the core difficulty lies in
developing an accurate domain-specific heuristic which is fast to compute. We
design a heuristic that accounts for the content of the upcoming query letters
to be aligned, which more effectively guides the search. Our proposed heuristic
has two advantages: (i) it is correctness-preserving, that is, it preserves the fact
that AStarix finds the best alignment, yet (ii) it is practically effective in that
the algorithm performs a near-optimal number of steps. Overall, this heuristic
enables AStarix to compute the best alignment while also scaling to larger
reference graph sizes when compared to existing state-of-the-art optimal aligners.

Our main contributions are:

1. AStarix. An algorithm for optimal sequence-to-graph alignment based on
a novel instantiation of A? with an accurate domain-specific heuristic that
accounts for the upcoming query letters to be aligned (§3).

2. Algorithmic optimizations. To ensure that AStarix is practical, we in-
troduce a number of algorithmic optimizations which increase performance
and decrease memory footprint (§4). We also prove that all optimizations
are correctness-preserving.

3. Thorough experimental evaluation of AStarix.We demonstrate that
AStarix is up to 2 orders of magnitude faster than other optimal aligners
on various reference graphs (§5).

1 We use the name GraphAligner to refer to the bit-parallel DP algorithm [27].

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

4 P. Ivanov et al.

Fig. 1: Starting from the reference graph (left), we can construct the edit graph
(middle) and the alignment graph Gqa for query q = “A” (right). Edges are
annotated with labels and/or costs, where sets of labels represent multiple edges,
one for each letter in the set (indicated by “x3” and “x4”).

2 Task Description: Alignment to Reference Graphs

We now describe the task of aligning a query to a reference graph. To this end,
we (i) introduce the task of optimal alignment on a reference graph, (ii) formalize
this task in terms of an edit graph, and (iii) introduce an alternative formulation
in terms of an alignment graph, which is the basis for shortest path formulations
of the optimal alignment. Fig. 1 summarizes these different graph types.

Reference Graph. We encode the collection of references to which we want
to align in a reference graph, which captures genomic variation that a linear
reference cannot express [25,9]. We formalize a reference graph as a tuple Gr =
(Vr, Er) of nodes Vr and directed, labeled edges Er ⊆ Vr × Vr × Σ, where the
alphabet Σ = {A, C, G, T} represents the four different nucleotides. Note that in
contrast to sequence graphs [28], we label edges instead of nodes.

Path, Spelling. Any path π = (e1, . . . , ek) in Gr induces a spelling σ(π) ∈ Σ∗
defined by σ(e1) · · ·σ(ek), where σ(ei) is the label of edge ei and Σ∗ :=

⋃
k∈NΣ

k.
We note that our approach naturally handles cyclic walks and does not re-
quire cycle unrolling, a feature shared with GraphAligner [27] and Brown-
ieAligner [11] but missing from vg [9], PaSGAL [15] and V-ALIGN [18].

Alignment on Reference Graph. An alignment of query q ∈ Σ∗ to a reference
graph Gr = (Vr, Er) consists of (i) a path π in Gr and (ii) a sequence of edit
operations (matches, substitutions, insertions, deletions) transforming σ(π) to q.

Optimal Alignment, Edit Distance. Each edit operation is associated with
a real-valued cost (∆match, ∆subst, ∆ins, and ∆del, respectively). An optimal
alignment minimizes the total cost of the edit operations converting σ(π) to q.
For optimal alignments, this total cost is equal to the edit distance between σ(π)
and q, i.e., the cheapest sequence of edit operations transforming σ(π) into q.

We make the (standard) assumption that 0 ≤ ∆match ≤ ∆subst, ∆ins, ∆del,
which will be a prerequisite for the correctness of our approach.

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

AStarix: Fast and Optimal Sequence-to-Graph Alignment 5

Edit Graph. Instead of representing alignments as pairs of (i) paths in the
reference graph and (ii) sequences of edit operations on these paths, we introduce
edit graphs whose paths intrinsically capture both. This way, we can formally
define an alignment more conveniently as a path in an edit graph.

Formally, an edit graph Ge := (Ve, Ee) has directed, labeled edges Ee ⊆
Ve × Ve × Σε × R≥0 with associated costs that account for edits. Here, Σε :=
Σ ∪ {ε} extends the alphabet Σ by ε to account for deleted characters (see
Fig. 1). The edit and reference graphs consist of the same vertices, i.e., Ve =
Vr. However, Ee contains more edges than Er to account for edits. Concretely,
for each edge (u, v, `) ∈ Er, Ee contains edges to account for (i) matches, by
an edge (u, v, `,∆match), (ii) substitutions, by edges (u, v, `′, ∆subst) for each
`′ ∈ Σ\`, (iii) deletions, by an edge (u, v, ε,∆del), and (iv) insertions, by edges
(u, u, `′, ∆ins) for each `′ ∈ Σ. The spelling σ(π) ∈ Σ∗ of a path π ∈ Ge is defined
analogously to reference graphs, except that deleted letters (represented by ε)
are ignored. The cost cost(π) of a path π ∈ Ge is the sum of all its edge costs.

Alignment on Edit Graph. An alignment of query q to Gr is a path π in Ge
spelling q, i.e., q = σ(π). An optimal alignment is an alignment of minimal cost.

Alignment Graph. To find an optimal alignment of q to the edit graphGe using
shortest path finding algorithms, we must ensure that only paths spelling q are
considered. To this end, we introduce an alternative but equivalent formulation
of alignments in terms of an alignment graph Gqa = (V qa , E

q
a).

Here, each state 〈v, i〉 ∈ V qa consists of a vertex v ∈ Ve and a query position
i ∈ {0, . . . , |q|} (equivalent to [28]). Traversing a state 〈v, i〉 ∈ V qa represents
the alignment of the first i query characters ending at node v. In particular,
query position i = 0 indicates that we have not yet matched any letters from the
query. We note that the alignment graph explicitly depends on the query q. In
particular, the example alignment graph G“A”

a in Fig. 1 lacks substitution edges
from Ge, as their labels (C, G, T) do not match the query q = “A”.

We construct the alignment graph Gqa to guarantee that any walk from a
source 〈u, 0〉 to a state 〈v, i〉 corresponds to an alignment of the first i letters of
query q to Gr. As a consequence, there is a one-to-one correspondence between
alignments πe of q to Ge and paths πqa ∈ Gqa from sources S := Vr × {0} to
targets T := Vr × {|q|}, with cost(πr) = cost(πqa). To find the best alignment in
Ge, only paths in Gqa (walks without repeating nodes) can be considered, since
repeating a node in Gqa cannot lead to a lower cost (∆del ≥ 0) for the same state.

The edges Eqa ⊆ V qa × V qa × Σε × R≥0 are built based on the edges in Ee,
except that the former (i) keep track of the position in the query i, and (ii) only
contain empty edges or edges whose label matches the next query letter:

(u, v, `, w) ∈ Ee =⇒ (〈u, i〉,〈v, i+ 1〉, `, w) ∈ Eqa for 0 ≤ i < |q| with q[i] = ` (1)
(u, v, ε, w) ∈ Ee =⇒ (〈u, i〉,〈v, i 〉, ε, w) ∈ Eqa for 0 ≤ i < |q| (2)

Here, assuming 0-indexing, q[i] is the next letter to be matched after matching
i letters. Then, Eq. (1) represents matches, substitutions, and insertions (which

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

6 P. Ivanov et al.

Algorithm 1 AStarix including heuristic function.
1: Gr: Reference graph . Global variables
2: d: Upcoming sequence length

3: function AStarix(q : Query)
4: Gqa ← DefineAlignmentGraph(Gr, q) . Following §2
5: S ← {〈v, i〉 ∈ V qa | i = 0} . Sources: no letter matched
6: T ← {〈v, i〉 ∈ V qa | i = |q|} . Targets: all letters matched
7: return A?(Gqa , S, T,Heuristic) . A? provided in App. A.1

8: function Heuristic(〈u, i〉 : State) . Heuristic: Cost of upcoming sequence
9: d′ ← min(d, |q| − i) . Actual length of upcoming sequence
10: s← q[i : i+ d′] . Upcoming sequence (next d letters after current)
11: return h(u, s) . Cost of aligning s to Ge starting from u

12: function h(u, s) . Cost of aligning s starting from u
13: return RecursiveAlign(u, s, 0.0,∞) . Simple branch-and-bound

advance the position in the query by 1), while Eq. (2) represents deletions (which
do not advance the position in the query).

Dynamic Construction. As the size of the alignment graph is O(|Gr|·|q|), it
is expensive to build it fully for every new query. Therefore, our implementation
constructs the alignment graph Gqa on-the-fly: the outgoing edges of a node are
only generated on demand and are freed from memory after alignment.

3 AStarix: Finding Optimal Alignments Using A?

In this section, we first introduce the general A? algorithm for finding shortest
paths, and the notion of an optimistic heuristic, a sufficient condition for in-
stantiations of A? to be correct (i.e., to indeed find shortest paths). Then we
instantiate A? with our domain-specific heuristic that accounts for upcoming
subsequences to be aligned, and prove that this heuristic is optimistic.

3.1 Background: General A? algorithm

Given a weighted graph G = (V,E) with E ⊆ V × V × R≥0, the A? algorithm
(abbreviated as A?) searches for the shortest path from sources S ⊆ V to targets
T ⊆ V . It is an extension of Dijkstra’s algorithm that additionally leverages a
heuristic function h : V → R≥0 to decide which paths to explore first. If h(u) ≡ 0,
A? is equivalent to Dijkstra’s algorithm. We provide an implementation of A?
and Dijkstra in App. A.1, but do not assume knowledge of either algorithm in the
following. At a high level, A? maintains the set of all explored states, initialized
with the set of sources S. Then, A? iteratively expands the explored state with
lowest estimated cost by exploring all its neighbors, until it finds a target. Here,

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

AStarix: Fast and Optimal Sequence-to-Graph Alignment 7

the cost for node u is estimated by the distance from source, called g(u), plus
the estimate from the heuristic h(u).

Heuristic Function. The heuristic function h(u) estimates the cost h∗(u) of
a shortest path in G from u to a target t ∈ T . Intuitively, a good heuristic
correlates well with the distance from u to t.

To ensure that A? indeed finds the shortest path, h should be optimistic:

Definition 1 (Optimistic heuristic). A heuristic h is optimistic if it provides
a lower bound on the distance to the closest target: ∀u.h(u) ≤ h∗(u).

While any optimistic h ensures that A? finds optimal alignments [6, Res. 3],
the specific choice of h is critical for performance. In particular, decreasing the
error δ(u) = h∗(u) − h(u) can only improve the performance of A? [6, Res. 6].
Thus, a key contribution of ours is a domain-specific heuristic h.

3.2 AStarix: Instantiating A?

Algorithm 1 shows an unoptimized version of AStarix and its heuristic function.
AStarix expects a reference graph (Line 1) and a query (Line 3) as input, and
returns an optimal alignment (Line 7) by searching for a shortest path from S
to T in the alignment graph Gqa. It is parameterized by hyper-parameters (d in
Line 2, more in §4) and edit costs (implicitly provided).

The function Heuristic (Lines 8–11) computes a lower bound on the remain-
ing cost of a best alignment: the minimum cost h(u, s) of aligning the upcoming
sequence s (where |s| ≤ d) starting from node u. Importantly, s is limited to the
next d′ ≤ d letters of q, starting from query position i. Thus, computing h(u, s)
is substantially cheaper than aligning all remaining letters of q.

To compute h(u, s) we leverage a simple branch-and-bound algorithm, pro-
vided in App. A.2. In the following, for convenience, we refer to the heuristic as h
(which is parameterized by (u, s)) instead of Heuristic (which is parameterized
by 〈u, i〉). Further, we say that h is optimistic if h(u, s) is a lower bound on the
cost for aligning all remaining letters (i.e., q[i : |q|]) starting from node u (note
that s is a prefix of q[i : |q|]).

Theorem 1. h is optimistic.

Proof. h only considers the next d′ letters of q instead of all remaining letters.
Since all costs are non-negative, the theorem follows. ut

Benefit of A? Heuristic over Dijkstra. Fig. 2 shows the benefit of using
our heuristic function compared to Dijkstra. Here, Dijkstra expands states
based on their distance g from the origin nodes 〈u, 0〉 and 〈v, 0〉. Hence, depend-
ing on tie-breaking, Dijkstra may expand all states with h ≤ 1, as shown in
Fig. 2. By contrast, A? chooses the next state to expand by the sum of the dis-
tance from the origin g and the heuristic h, expanding only states with g+h ≤ 1.

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

8 P. Ivanov et al.

Fig. 2: The benefit of using our heuristic over Dijkstra. Alignment graph
G“ATAA”

a (right) is based on reference graph Gr (left), but omits insertion and
deletion edges for simplicity. The pink boxes g+h indicate the distance from the
sources S = {〈u, 0〉, 〈v, 0〉} (in g) and the cost of aligning the next d = 2 letters
(in h). Dijkstra (resp. A?) expands states circled in blue (resp. dashed red).

Memoization. Recall that the return value of h in Line 8 only depends on u
and the upcoming sequence s (which in turn depends on i and d). Thus, h(u, s)
can be reused for different positions across different queries in O(1) time, if it
was computed for a previous query.

4 AStarix Algorithm: Optimizations

We now discuss several optimizations we developed to speed up AStarix while
preserving its optimality. These optimizations reduce preprocessing and align-
ment runtime as well as memory footprint (in particular for memoization).

4.1 Reducing Semi-global to Local Alignment Using a Trie

To find an optimal alignment, we generally need to consider all reference graph
nodes u ∈ Gr as possible starting nodes. Thus, optimal aligners PaSGAL [15]
and GraphAligner [27] brute-force through all possible starting nodes u ∈ Gr.

To more efficiently handle arbitrary starting positions for alignments, we ex-
tend the reference graph with a trie (referred to as suffix tree in [8]) to effectively
align from all possible starting nodes simultaneously.

Single Starting State. In the trie approach, abstraction nodes are added to
the graph, each of which corresponds to a set of nodes in Gr that correspond to
the same prefix. In the following, we formalize this approach.

Concretely, we extend Gr by a trie of depth D, resulting in graph G+
r =

(V +
r , E

+
r). Our goal is that all paths in Gr that have length D and end in v ∈ Vr

correspond to paths in G+
r starting from a single source ε to v ∈ V +

r , where
ε represents the empty string. This correspondence ensures that it suffices to
consider only paths inG+

r starting from the source ε. In particular, each alignment
on G+

r can be translated into an alignment on Gr (we omit this translation here).

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

AStarix: Fast and Optimal Sequence-to-Graph Alignment 9

Fig. 3: G+
r enables semi-global align-

ment by extending Gr with a trie.

Fig. 3 shows an example trie. To
construct it, we first associate with ev-
ery node v ∈ Vr the set Sv of its D-mers
(orange boxes in Fig. 3): spells of paths
ending in v and of length D. Our goal
is then to use paths in the trie to spell
these D-mers.

Second, we construct the trie nodes
from all prefixes of these D-mers:

V +
r := Vr ∪

⋃
v∈Vr

{
s[0 : i]

∣∣∣∣ s ∈ Sv,
0 ≤ i < D

}
.

Third, we add edges within the trie,
which ensure that paths from ε to any
trie node s spell s. Formally, whenever
s·` ∈ V +

r , we add an edge (s, s·`, `) to
E+
r , where “·” denotes string concatena-

tion. Finally, we add edges between the trie and the reference graph, which
ensure that any D-mer of any node v ∈ Vr can be spelled by a walk from ε to v.
Formally, if s·` ∈ Sv, then (s, v, `) ∈ E+

r .
Importantly, extending Gr to G+

r is compatible with the construction of the
edit graph Ge, the construction of the alignment graph and all other optimiza-
tions. In particular, when searching for a shortest path in the alignment graph
constructed from G+

r, it suffices to only consider starting node 〈ε, 0〉.

Reducing Size of Trie. We can reduce the size of the trie by removing specific
trie nodes. In particular, we iteratively remove each trie leaf node s·` ∈ V +

r with a
unique outgoing edge (s·`, v, `′) to a reference graph node v ∈ Vr. To compensate
for removing node s · `, we introduce a new edge (s, u, `) to a node u ∈ Vr with
an edge (u, v, `′) (such a node must exist according to the construction of G+

r).
For example, in Fig. 3, we (i) remove node AT including its edges (A, AT, T) and
(AT, u3, C), but (ii) introduce an edge (A, u2, T).

This optimization is lossless, as the D-mer s · ` · `′ ∈ Sv can still be spelled
by the path from ε to s, extended by (s, u, `) and (u, v, `′).

4.2 Greedy Match Optimization

We also employ an optimization originally developed for computing the edit
distance between two strings [31,1], but which has also been used in the context of
string to graph alignment [8]. We omit the correctness proof of this optimization,
which is already covered in [31], and only explain the intuition behind it.

Suppose there is only one outgoing edge e = (u, v, `) ∈ Er from a node
u ∈ Vr. Suppose also that while aligning a query q, we explore state 〈u, i〉 for
which the next query letter q[i] matches the label `. In this case, we do not
need to consider the edit outgoing edges, because any edit at this point can be

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

10 P. Ivanov et al.

postponed without additional cost, as ∆match ≤ min(∆subst, ∆ins, ∆del). Thus,
we can greedily explore state 〈v, i + 1〉, aligning q[i + 1] to e by using the edge
(〈u, i〉, 〈v, i + 1〉, `,∆match) before continuing with the A? search. We note that
this optimization is only applicable when aligning in non-branching regions of
the reference graph. In particular, it is not applicable for most trie nodes (§4.1).

4.3 Speeding Up Evaluation of Heuristic

In the following, we show how to reduce the runtime of evaluating the heuristic
h(u, s), by introducing two separate optimizations that compose naturally.

Capping Cost. We cap h(u, s) at c, replacing it by hc(u, s) := min(h(u, s), c).
To achieve this, we allow RecursiveAlign to ignore paths costing more than c.
For large enough c, this speeds up computation without significantly decreasing
the benefit of the heuristic, since nodes associated with a high heuristic value
are typically not explored anyways. We investigate the effect of c in App. A.3.

Theorem 2. hc is optimistic.

Proof. We have hc(u, s) ≤ h(u, s) and that h(u, s) is optimistic (Theorem 1). ut

Capping Depth.We reduce the number of nodes that need to be considered by
h(u, s). To this end, we define a modified heuristic hd(u, s) that only considers
nodes Ru ⊆ Ve at distance at most d from u (cp. Line 2 in Algorithm 1):
Ru := {v ∈ Vr | ∃ path π ∈ Ge from u to v with |π| ≤ d}.

If an alignment of s reaches the boundary of Ru, defined as

B(Ru) := {v ∈ Ru | ∃(v, v′, `) ∈ Ee with v′ /∈ Ru},

it is allowed to only spell a prefix of s, and the remaining unaligned letters of s
are considered aligned with zero cost:

hd(u, s) := min
π∈Π

cost(π), where

Π :=
{
π ∈ Gr

∣∣ start(π) = u, σ(π) = s ∨
(
end(π) ∈ B(Ru) ∧ ∃i.σ(π) = s[1..i]

)}
Theorem 3. hd is optimistic.

Proof. It suffices to show hd(u, s) ≤ h(u, s) since h(u, s) is optimistic. In the case
where all of s is aligned, hd(u, s) = h(u, s). Otherwise, the unaligned letters of s
are not penalized, so hd(u, s) ≤ h(u, s). ut

4.4 Partitioning Nodes into Equivalence Classes

We have shown in §3.2 how to reuse an already computed h(u, s) for repeating
s across different queries and query positions. In the following, we additionally
aim to reuse h(u, s) across different nodes u, so that h(u, s) does not need to be
computed for all nodes u. Intuitively, we want to assign two nodes u and v to the

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

AStarix: Fast and Optimal Sequence-to-Graph Alignment 11

same equivalence class when the graph region considered by h(u, s) is equivalent
to the graph region considered by h(v, s), up to renaming of nodes.

Thus, h(u, s) = h(v, s) if u and v are from the same equivalence class. There-
fore, we can (arbitrarily) choose a representative node r ∈ Vr for every equiva-
lence class, and evaluate h(r, s) instead of h(u, s), where r is the representative
of the equivalence class of u. To look up representative nodes in O(1), we define
a helper array repr with repr [u] = r.

Identifying Equivalence Classes. To identify the nodes belonging to the same
equivalence class, we assume the optimization from §4.3, i.e., that our heuristic
only considers nodes up to a distance d from u. Moreover, for performance rea-
sons, our implementation detects only the equivalence classes of nodes u with a
single outgoing path of length at least d. In this case, u and u′ are in the same
equivalence class if their outgoing paths spell the same sequence. In contrast, we
leave nodes with forking paths in separate equivalence classes.

Note that for smaller d, the number of equivalence classes gets smaller, the
reuse of the heuristic gets higher, and the memoization table has a lower memory
footprint. At the same time, however, the heuristic hd(u, s) is less informative.

5 Evaluation

In this section we present a thorough experimental evaluation2 of AStarix on
simulated Illumina reads. Our evaluation demonstrates that:

1. AStarix is faster than Dijkstra because the heuristic reduces the number
of explored states by an order of magnitude.

2. The runtime of AStarix scales better than state-of-the-art optimal aligners
with increasing graph size, on a variety of reference graphs.

5.1 Implementation of AStarix and Dijkstra

Our AStarix implementation uses an adjacency list graph data structure to
represent the reference and the trie in a unified way, representing each letter by
a separate edge object. To represent the reverse complementary walks in Gr,
the vertices are doubled, connected in the opposite direction, and labeled with
complementary nucleotides (A ↔ T, C ↔ G). We do not limit the number of
memoized heuristic function values (§3.2), but note we could do so by resetting
the memoization table periodically. Our implementation of Dijkstra reuses the
same AStarix codebase except the use of a heuristic function (i.e., with h ≡ 0).

We apply all described optimizations to AStarix and Dijkstra, except §4.3
and §4.4 which are applicable only to AStarix.

While the optimality of AStarix is not affected by its parameters, its per-
formance is (see App. A.3 for analysis). To compare with other aligners, we use
values d = 5, c = 5, D = blogΣ |Gr|c.
2 https://github.com/eth-sri/astarix/tree/RECOMB2020_experiments

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://github.com/eth-sri/astarix/tree/RECOMB2020_experiments
https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

12 P. Ivanov et al.

5.2 Compared Aligners: PaSGAL and GraphAligner

We compare the performance of AStarix to that of two state-of-the-art optimal
aligners: PaSGAL and GraphAligner, with their default parameters. We do
not compare to the exact aligner of vg as (i) its optimal alignment is intended
for testing purposes only, (ii) it does not provide an interface for aligning a set
of reads, and (iii) it has been consistently outperformed by PaSGAL [15].

PaSGAL is compiled with AVX2 SIMD support. The resulting alignments
are not expected to match exactly between the local aligner PaSGAL and the
semi-global aligners (AStarix and GraphAligner) as they solve different tasks
with different edit costs. Nevertheless, in analogy with the evaluations of PaS-
GAL [15], it is still meaningful to compare performance, assuming that the
dynamic programming approach of PaSGAL can be adapted to semi-global
alignment with similar performance.

Both GraphAligner and PaSGAL reach their worst-case runtime com-
plexity independent of the edit costs ∆ = (∆match, ∆subst, ∆ins, ∆del). PaSGAL
is evaluated using its default costs ∆ = (−1, 1, 1, 1) and GraphAligner is
evaluated using the only supported costs ∆ = (0, 1, 1, 1).

5.3 Setting

All evaluations were executed singled-threaded on an Intel Core i7-6700 CPU
running at 3.40GHz.

Reference Graphs and Reads.We designed three experiments utilizing three
different reference graphs (in Table 1). The first is a linear graph without vari-
ation based on the E. coli reference genome (strain: K-12 substr. MG1655,
ASM584v2 [13]). The other two are variation graphs taken from the PaSGAL
evaluations [15]: they are based on the Leukocyte Receptor Complex (LRC, with
1 099 856 nodes and 1 144 498 edges), and the Major Histocompatibility Complex
(MHC1, with 5 138 362 nodes and 5 318 019 edges). We note that we do not eval-
uate on de Brujin graphs, since PaSGAL does not support cyclic graphs.

For the E. coli dataset we used the ART tool [14] to simulate an Illumina
single-end read set with 10 000 reads of length 100. For the LCR and MHC1
datasets, we sampled 20 000 single-end reads of length 100 from the already
generated sets in [15] using the Mason2 [12] simulator.

For Dijkstra and AStarix, the runtime complexity depends not only on
the data size, but also on the data content, including edit costs. More accurate
heuristics lead to better A? performance [26], which is why we evaluate AStarix
with costs corresponding more closely to Illumina error profiles: ∆ = (0, 1, 5, 5).

Metrics. As all aligners evaluated in this work are provably optimal, we are
mostly interested in their performance. To study the end-to-end performance of
the optimal aligners, we use the Snakemake [20] pipeline framework to measure
the execution time of every aligner (including the time spent on reading and
indexing the reference graph input and outputting the resulting alignments).
We note that the alignment phase dominates for all tools and experiments.

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

AStarix: Fast and Optimal Sequence-to-Graph Alignment 13

Table 1: Performance of optimal aligners for different reference graphs.
Runtime and Memory

Genome graph Size AStarix Dijkstra PaSGAL GraphAligner

E. coli (linear) ∼4.7 Mbp 33 sec 73 sec 3 272 sec 4 906 sec
0.66 GB 0.66 GB 0.55 GB 0.43 GB

LCR (variant) ∼1 Mbp 437 sec 940 sec 1 614 sec SegFault1.12 GB 1.09 GB 0.30 GB

MHC1 (variant) ∼5 Mbp 1 282 sec 1 588 sec >7 200 sec SegFault4.35 GB 1.21 GB 0.87 GB

To judge the potential of heuristic functions, we measure not only the runtime
but also the number of states explored by AStarix and Dijkstra. This number
reflects the quality of the heuristic function rather than the speed of computation
of the heuristic, the implementation and the system parameters.

5.4 Comparison of Optimal Aligners

Different Reference Graphs. Table 1 shows the performance of optimal align-
ers across various references. On all references, AStarix is consistently faster
than Dijkstra, which is consistently faster than PaSGAL and GraphAligner.
The memory usage of Dijkstra is within a factor of 3 compared to PaSGAL
and GraphAligner. Due to the heuristic memoization, the memory usage of
AStarix can grow several times compared to Dijkstra.

Scaling with Reference Graph Size. Fig. 4 compares the performance of ex-
isting optimal aligners. GraphAligner and PaSGAL always explore all states,
thus their average-case reaches the worst-case complexity ofO(|Gqa|) = O(m·Gr).
Due to the trie indexing, the runtime of AStarix and Dijkstra scales in the
reference size with a polynomial of power around 0.2 versus the expected linear
dependency of GraphAligner and PaSGAL.

The heuristic function of AStarix demonstrates a 2-fold speed-up over Di-
jkstra. This is possible due to the highly branching trie structure, which allows
skipping the explicit exploration for the majority of starting nodes.

5.5 A? Speedup

To measure the speedup caused by the heuristic function, we compare the num-
ber of not only the expanded, but also of explored states (the latter number
is never smaller, see §3.1 and the example in Fig. 2) between AStarix and
Dijkstra on the MHC1 dataset.

Fig. 5 demonstrates the benefit of the heuristic function in terms of both
alignment time and number of explored states. Most importantly, AStarix

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

14 P. Ivanov et al.

10 2Mbp 10 1Mbp 100Mbp 10Mbp
Reference length

10s

102s

103s

Runtime

y x0.2

y xGraphAligner
Dijkstra
AStarix
PaSGAL

GraphAligner
Dijkstra
AStarix
PaSGAL

104bp 105bp 106bp 107bp
Reference length

10MB

102MB

Memory
GraphAligner
Dijkstra
AStarix
PaSGAL

GraphAligner
Dijkstra
AStarix
PaSGAL

Fig. 4: Comparison of overall runtime and memory usage of optimal aligners with
increasing prefixes of E. coli as references.

0 1 2 3 4 all
Best alignment cost

10 2s

10 1s

100s

10s

102s
Alignment time per read

y x3.11

y x10.55

0.335x
1.04x

5.32x

14.6x
40x

4.25x

A*
Dijkstra

0 1 2 3 4 all
Best alignment cost

103

105

107

109
Explored states

y x3.09

y x10.45

0.445x
1.45x

7.95x
19.9x

53.4x

5.88x

Total
states

Lower
bound

A*
Dijkstra

Fig. 5: Comparison of A? and Dijkstra in terms of mean alignment runtime per
read and mean explored states depending on the best alignment cost on MHC1.

scales much better with increasing number of errors in the read, compared to
Dijkstra. More specifically, the number of states explored by Dijkstra, as a
function of alignment cost, grows as a polynomial of degree 10.5, whereas AS-
tarix grows nearly cubically (the empirical complexity is estimated as a best
exponential fit exploredStates ∼ a · scoreb).

The horizontal black line in Fig. 5 denotes the total number of states |Gr|·|q|,
which is always explored by GraphAligner and PaSGAL. On the other hand,
any aligner must explore at least m = |q| states, which we show as a horizontal
dashed line. This lower bound is determined by the fact that at least the states
on a best alignment need to be explored.

6 Conclusion

We presented AStarix, an A? algorithm to find optimal alignments, based on
a domain-specific heuristic and enhanced by multiple algorithmic optimizations.
Importantly, our approach allows for both cyclic and acyclic graphs including
variation and de Bruijn graphs.

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

AStarix: Fast and Optimal Sequence-to-Graph Alignment 15

We demonstrated that AStarix scales exponentially better than Dijkstra
with increasing (but small) number of errors in the reads. Moreover, for short
reads, both AStarix and Dijkstra scale better and outperform current state-
of-the-art optimal aligners with increasing genome graph size. Nevertheless, scal-
ing optimal alignment of long reads on big graphs remains an open problem.

We expect that AStarix can be scaled further, to both (i) bigger graphs
and (ii) longer and noisier reads. Scaling AStarix may require a combination
of (i) the development of more clever heuristic functions (by leveraging existing
work on A? and edit distance) and (ii) algorithmic optimizations. We note that
if desired, a (sub-optimal) seeding step could speed up AStarix by pre-filtering
the starting positions, analogously to other practical aligners.

References

1. Allison, L.: Lazy dynamic-programming can be eager. Information Processing Let-
ters (1992)

2. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J.: Basic local align-
ment search tool. Journal of Molecular Biology (1990)

3. Antipov, D., Korobeynikov, A., McLean, J.S., Pevzner, P.A.: hybridSPAdes: an
algorithm for hybrid assembly of short and long reads. Bioinformatics (Oxford,
England) (2016)

4. Brandt, D.Y.C., Aguiar, V.R.C., Bitarello, B.D., Nunes, K., Goudet, J., Meyer,
D.: Mapping Bias Overestimates Reference Allele Frequencies at the HLA Genes
in the 1000 Genomes Project Phase I Data. G3 (Bethesda, Md.) (2015)

5. Buhler, S., Sanchez-Mazas, A.: HLA DNA sequence variation among human popu-
lations: molecular signatures of demographic and selective events. PloS One (2011)

6. Dechter, R., Pearl, J.: Generalized best-first search strategies and the optimality
of A*. Journal of the ACM (1985)

7. Dilthey, A., Cox, C., Iqbal, Z., Nelson, M.R., McVean, G.: Improved genome in-
ference in the MHC using a population reference graph. Nature Genetics (2015)

8. Dox, G., Fostier, J.: Efficient algorithms for pairwise sequence alignment on graphs.
Master’s thesis, Ghent university (2018)

9. Garrison, E., Sirén, J., Novak, A.M., Hickey, G., Eizenga, J.M., Dawson, E.T.,
Jones, W., Garg, S., Markello, C., Lin, M.F., Paten, B., Durbin, R.: Variation graph
toolkit improves read mapping by representing genetic variation in the reference.
Nature Biotechnology (2018)

10. Harismendy, O., Schwab, R.B., Bao, L., Olson, J., Rozenzhak, S., Kotsopoulos,
S.K., Pond, S., Crain, B., Chee, M.S., Messer, K., Link, D.R., Frazer, K.A.: Detec-
tion of low prevalence somatic mutations in solid tumors with ultra-deep targeted
sequencing. Genome Biology (2011)

11. Heydari, M., Miclotte, G., Van de Peer, Y., Fostier, J.: BrownieAligner: accurate
alignment of Illumina sequencing data to de Bruijn graphs. BMC Bioinformatics
(2018)

12. Holtgrewe, M.: Mason – A Read Simulator for Second Generation Sequencing Data.
Tech. Report FU Berlin (2010), http://publications.imp.fu-berlin.de/962/

13. Howe, K.L., Contreras-Moreira, B., De Silva, N., Maslen, G., Akanni, W., Allen, J.,
Alvarez-Jarreta, J., Barba, M., Bolser, D.M., Cambell, L., et al.: Ensembl Genomes
2020–enabling non-vertebrate genomic research. Nucleic Acids Research (2020)

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

http://publications.imp.fu-berlin.de/962/
https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

16 P. Ivanov et al.

14. Huang, W., Li, L., Myers, J.R., Marth, G.T.: ART: a next-generation sequencing
read simulator. Bioinformatics (Oxford, England) (2012)

15. Jain, C., Misra, S., Zhang, H., Dilthey, A., Aluru, S.: Accelerating Sequence Align-
ment to Graphs. In: International Parallel and Distributed Processing Symposium
(IPDPS) (2019), iSSN: 1530-2075

16. Jain, C., Zhang, H., Gao, Y., Aluru, S.: On the Complexity of Sequence to Graph
Alignment. In: Research in Computational Molecular Biology. Cham (2019)

17. Jean, G., Kahles, A., Sreedharan, V.T., De Bona, F., Rätsch, G.: RNA-Seq read
alignments with PALMapper. Current Protocols in Bioinformatics (2010)

18. Kavya, V.N.S., Tayal, K., Srinivasan, R., Sivadasan, N.: Sequence Alignment on
Directed Graphs. Journal of Computational Biology (2019)

19. Kim, D., Paggi, J.M., Park, C., Bennett, C., Salzberg, S.L.: Graph-based genome
alignment and genotyping with HISAT2 and HISAT-genotype. Nature Biotechnol-
ogy (2019)

20. Köster, J., Rahmann, S.: Snakemake–a scalable bioinformatics workflow engine.
Bioinformatics (Oxford, England) (2012)

21. Langmead, B., Salzberg, S.L.: Fast gapped-read alignment with Bowtie 2. Nature
Methods (2012)

22. Li, H., Durbin, R.: Fast and accurate short read alignment with Burrows–Wheeler
transform. Bioinformatics (Oxford, England) (2009)

23. Limasset, A., Flot, J.F., Peterlongo, P.: Toward perfect reads: self-correction of
short reads via mapping on de Bruijn graphs. Bioinformatics (2019), btz102

24. Liu, B., Guo, H., Brudno, M., Wang, Y.: deBGA: read alignment with de Bruijn
graph-based seed and extension. Bioinformatics (Oxford, England) (2016)

25. Paten, B., Novak, A.M., Eizenga, J.M., Garrison, E.: Genome graphs and the
evolution of genome inference. Genome Research (2017)

26. Pearl, J.: On the Discovery and Generation of Certain Heuristics. AI Magazine
(1983)

27. Rautiainen, M., Mäkinen, V., Marschall, T.: Bit-parallel sequence-to-graph align-
ment. Bioinformatics (2019)

28. Rautiainen, M., Marschall, T.: Aligning sequences to general graphs in O (V +
mE) time. preprint (2017)

29. Salmela, L., Rivals, E.: LoRDEC: accurate and efficient long read error correction.
Bioinformatics (Oxford, England) (2014)

30. Schneeberger, K., Hagmann, J., Ossowski, S., Warthmann, N., Gesing, S.,
Kohlbacher, O., Weigel, D.: Simultaneous alignment of short reads against multiple
genomes. Genome Biology (2009)

31. Sellers, P.H.: An algorithm for the distance between two finite sequences. Journal
of Combinatorial Theory (1974)

32. Sirén, J.: Indexing Variation Graphs. In: 2017 Proceedings of the Ninteenth Work-
shop on Algorithm Engineering and Experiments (ALENEX) (2017)

33. Sirén, J., Välimäki, N., Mäkinen, V.: Indexing Graphs for Path Queries with Appli-
cations in Genome Research. IEEE/ACM transactions on computational biology
and bioinformatics (TCBB) (2014)

34. Smith, T.F., Waterman, M.S.: Comparison of biosequences. Advances in Applied
Mathematics (1981)

35. Stevenson, K.R., Coolon, J.D., Wittkopp, P.J.: Sources of bias in measures of
allele-specific expression derived from RNA-seq data aligned to a single reference
genome. BMC Genomics (2013)

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

AStarix: Fast and Optimal Sequence-to-Graph Alignment 17

A Appendix

A.1 Generic Algorithms: A? and Dijkstra

Algorithm 2 shows a generic implementation of the A? algorithm, roughly fol-
lowing [6]. We do not implement the reconstruction of the best alignment in
order to simplify the presentation. The procedure BacktrackPath traces the
best alignment back to the source, based on remembered edges used to optimize
f for each alignment state. Algorithm 2 also shows a simple implementation of
Dijkstra in terms of A?.

Algorithm 2 A? algorithm (generalizes Dijkstra)
1: function A?(G : Graph, S : Sources, T : Targets, h : Heuristic function)
2: f ← Map(default =∞) : Nodes→ R≥0 . Map nodes from G to priorities
3: Q← MinPriorityQueue(priority = f) . Priorities according to f
4: for all s ∈ S do
5: f [s]← 0.0
6: Q.push(s) . Initially, explore all s ∈ S
7: while Q 6= ∅ do
8: curr ← Q.pop() . Get state with minimal f to be expanded
9: if curr ∈ T then
10: return BacktrackPath(curr) . Reconstruct a path to curr

(omitted)
11: for all (curr ,next , cost) ∈ G.outgoingEdges(curr) do
12: f̂next ← f [curr] + cost + h(next) . Candidate value for f [next]
13: if f̂next < f [next] then
14: f [next]← f̂next
15: Q.push(next) . Explore state next

16: assert False . Cannot happen if T is reachable from S

17: function Dijkstra(G : Graph, S : Sources, T : Targets)
18: h(v)← 0.0 . Constant-zero function h
19: A?(G,S, T, h)

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

18 P. Ivanov et al.

Algorithm 3 Recursive alignment used by Heuristic in Algorithm 1.

1: function RecursiveAlign(u, s, curr , best) . Return value is ≤ best
2: if curr ≥ best then
3: return best . Branch and bound: bounding
4: if s = ε then . Reached a target
5: return curr
6: for all (u, v , `, w) ∈ Ee where ` ∈ {s[0], ε} do
7: suff = s[1 :] if ` 6= ε else s
8: best = RecursiveAlign(u, suff , curr + w, best)

9: return best

A.2 Recursive Alignment Algorithm

Algorithm 3 shows our implementation of RecursiveAlign, used in Algo-
rithm 1 to evaluate h. RecursiveAlign is a simple branch-and-bound algo-
rithm that recursively looks for the cheapest alignment of s starting from u, and
does not follow paths whose cost exceeds best , the best path found so far.

A.3 Parameter Estimation

We now evaluate the influence of different parameter choices (c, d, D) on runtime
and memory usage.

Fig. 6 demonstrates the benefit of using a trie with the size reduction opti-
mization (end of §4.1): increasing the trie depthD speeds up aligning but requires
more memory. Selecting the trie depth based on the graph size D = blogΣ |Gr|c
provides a reasonable trade-off between alignment time and memory.

Fig. 7 shows the joint effect of c and d. It demonstrates that having a long
reach (d) that covers at least some errors (c > 0) is a reasonable strategy for
choosing d and c.

8 10 12 14 16
D (Trie depth)

500s

1000s

1500s

2000s

2500s

3000s
Align runtime log4(E)

0M

20M

40M

60M
#Edges

Reference
Trie

Fig. 6: Effect of D on performance
of AStarix (MHC1 experiment). The
dashed line shows our choice of D.

0 1 2 3 4 5 6
Length cap (d)

0
1
2
3
4
5
6

Co
st

 c
ap

 (c
)

Alignment time

500

1000

1500

2000

2500

3000

se
c

Fig. 7: Runtime of AStarix depending
on d and c (MHC1 experiment).

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

AStarix: Fast and Optimal Sequence-to-Graph Alignment 19

A.4 Versions, commands, parameters for running all evaluated
approaches

In the following, we provide details on how we executed the approaches discussed
in §5:
PaSGAL
Obtained from https://github.com/ParBLiSS/PaSGAL (Commit 50ad80c)
Command PaSGAL -q reads.fq -r graph.vg -m vg -o output -t 1

GraphAligner
Obtained from https://github.com/maickrau/GraphAligner/tree/

WabiExperiments (Commit 241565c)
Command Aligner -f reads.fq -g graph.gfa >output

AStarix
Obtained from https://github.com/eth-sri/astarix/tree/recomb2020
Command astarix align-optimal -f reads.fq -g graph.gfa

>output
Dijkstra
Obtained from https://github.com/eth-sri/astarix/tree/recomb2020
Command astarix align-optimal -f reads.fq -g graph.gfa -a

dijkstra >output

A.5 Notations

Table 2 summarizes the notational conventions used in this work.

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://github.com/ParBLiSS/PaSGAL
https://github.com/maickrau/GraphAligner/tree/WabiExperiments
https://github.com/maickrau/GraphAligner/tree/WabiExperiments
https://github.com/eth-sri/astarix/tree/recomb2020
https://github.com/eth-sri/astarix/tree/recomb2020
https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

20 P. Ivanov et al.

Table 2: Notational conventions.
Object Notation
Queries Q = {qi|qi ∈ Σm}
Query q ∈ Q
Length m := |q| ∈ N
Position in query q[i] ∈ Σ, i ∈ {1, . . . ,m}

Reference graph Gr = (Vr, Er)
Size |Gr| := |Vr|+ |Er| ∈ N
Nodes u, v ∈ Vr, n := |Vr| ∈ N
Edges e ∈ Er := Vr × Vr ×Σ
Edge letter ` ∈ Σ

Reference graph with a trie G+
r = (V +

r , E
+
r)

Trie depth D ∈ N>0

Edit graph Ge = (Ve, Ee)
Edit costs 0 ≤ ∆match ≤ ∆subst,∆ins,∆del

Alignment π ∈ E∗e and σ(π) = q
Optimal alignment π̇ ∈ E∗e
Alignment cost cost(π) ∈ R≥0

Alignment graph Gqa = (V qa , E
q
a)

Size N := |V qa | ∈ N
State 〈u, i〉 ∈ V qa := V × {0, . . . ,m}
Edges (〈u, i〉, 〈v, j〉, `, w) ∈ Eqa ⊆ V qa × V qa ×Σε × R≥0

Edge cost w ∈ R≥0

In all graphs G(V,E) ∈ {Gr, Ge, G
q
a}

Walk π ∈ G : π ∈ E∗
Walk spelling σ(π) ∈ Σ∗
Walk begin and end nodes begin(π), end(π) ∈ V
Path a walk without repeating nodes

AStarix A?(G,S, T, h)
Graph G = (V,E)
Nodes u, v ∈ V
Edges e ∈ E ⊆ V × V × R≥0

Source states S ⊆ V
Target states T ⊆ V
Upcoming sequence s ∈ Σk

Cost cap c ∈ R≥0

Depth cap d = |s|
Heuristic function h(u, s) : V → R[0;∞], |s| ≤ d
Minimum cost to a target h∗(u, s)
Cost of the cheapest path from u to v k(u, v), u, v ∈ G
Optimistic h(u, s) ≤ minπ cost(π), π : π starts from u, σ(π) = s
Explored state A state pushed to the queue of Algorithm 2
Expanded state A state popped from the queue of Algorithm 2

.CC-BY 4.0 International licenseauthor/funder. It is made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the. https://doi.org/10.1101/2020.01.22.915496doi: bioRxiv preprint

https://doi.org/10.1101/2020.01.22.915496
http://creativecommons.org/licenses/by/4.0/

	AStarix: Fast and Optimal Sequence-to-Graph Alignment

