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Introduction

e Discusses the political “sentiment” of the twitter information
produced from 11 April to 05 June, during the second round
Peruvian presidential election between Ms. Keiko Fujimori
from Fuerza Popular and Mr. Pedro Pablo Kuczynski from
Peruanos por el Kambio political party using the supervised
aggregated sentiment analysis method (SASA).

e Considers past electoral analysis realized in United States,
France, and Italy. The estimation results with an average
mean absolute error of approximately 2.5 points respect to the
official results.
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Motivation 1

e Measure the effectivity of the SASA method in emerging
internet communities such as Peru.
E.g. Number internet users Italy - Peru (The World Bank).
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Motivation 2

e Special case of the candidate Julio Guzman who obtained a
high popularity in the first round of the Peruvian presidential
election using social networks (Fig. Ipsos Polling Company).
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ESCENARIO ELECTORAL CON TODOS LOS CANDIDATOS

1. 5i maRana fueran las elecciones presidenciales y se presentasen... {por quién votarfa? (Con Tarjeta)

“ 13

“-—~___—-—'—-—H_\
—_ 2 g : ’ °
7

. :

3 s
; ¢
3

T 1 1 L
s s o ot . oo1s ——

Florencio Paucar Sedano 12/02/2016

Pisa University



Introduction

Pisa University

Objectives

e Analyze the polls behaviors during the Peruvian election race.

e Predict the final results.

o Verified the accuracy of the supervised aggregated sentiment
analysis method for emerging social networks communities

such as Peru, with approximately 4 million of twitter users and
22 million voters.
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Data Preparation

@ Collection using political party and candidates names
keywords.

@® Separation of tweets wrote in languages different to Spanish
and retweets. Finally, obtaining 302 105 tweets to be
analyzed.

© Text processing of the twitter data (tranformation in lower
case, elimination of Urls, removing of punctuation characters,
tokenization of text)
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Hand codding

Consist in reading and assign a certain class to a subsample of the
twitter data collected. This subsample is the training set which will
be used by the ReadMe algorithm to classify the test set (D.
Hopkins G. K., 2010).
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Aggregated Statistical Analysis

Uses ReadMe algorithm to obtain the proportion of opinions
expressed in the entire dataset related to the categories defined
using aggregated classification since individual document
classification can lead to biased estimates of the document
category proportions. Variables of the algorithm:

- S as words used in the texts.

- D represents opinion of people expressed in the tweets.

- K is the number of stems kept in the stemming phase.

- J is number of categories to be considered in the analysis.
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Readme Algorithm

The objective is estimate P(D) = P(D/S) P(S).............. (1)

- P(S) is a vector of dimension 2Xx1 and represents the
tabulation of frequencies of word profiles in the whole
population of texts. If k=3 word stems, P(S) would contains

23 = 8 patterns occurring in the next set of documents: 000, 001,
010, 011,100,101,110, 111.

- P(D/S) is a matrix of dimension 2XxJ and estimates the
conditional distribution of word profiles within the training
set.

- P(D) is a vector of dimension Jx1, which is the J-vector
quantity of interest.
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Readme Algorithm

The first approach to obtain P(D) uses any individual classifier.
Unfortunately, the estimates of P(D/S) in the training set are
biased and presents high variability due to the noise in the tweets.
Thus, Readme focuses in :

P(S) = P(S/D)P(D)....cccccccvvuvvean. (2)

P(S/D) is not observed on the whole data set and it is estimated
by hand-coding of the training set.

Ph(S/D) = P(S/D)...ccccccvoviiinain. (3)

By solving the equation (2) via standard regression algebra:
P(D), unknown regression coefficients which could be called §.
P(S/D), explanatory variables which could be called matrix X.
P(S), dependent variable which could be called Y.
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Readme Algorithm

The equation (2) become Y = X 3 (with no error term). The
result P(D) is calculated via usual regression or via standard
constrained least squared to ensure that elements P(D) are each in
[0,1] and collectively sum to 1.

The equation (2) could be written in the following way.

P(D) = P(S/D) P(S).....ccoiiorrrrrrrrrrrrrr (4)

Finally, using the equation (3) and (4), it is obtained the objective
of the readme algorithm:
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Readme Algorithm

No biases would be produced if a word become more popular
between the time when the training set was hand coded and the
population documents were collected. Likewise, if documents in
certain categories are more prevalent in the population than
training set, no biases would be present (D. Hopkins G. K., 2010).
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Notes: For both P(D) on the left and P(S) in the center, the distributions differ considerably. The direct sampling estimator, P*(D), is
therefore highly biased. Yet, the right panel shows that our nonparametric estimator remains unbiased.
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Readme Algorithm

An empirical evidence of the performance of the ReadMe aproach
in comparison with individual classificators using Support Vector
Machine on data extracted from blog posts (D. Hopkins, 2010).
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(vertically) by the actual frequencies (horizontally). Our nonpara-
metric approach is represented with black open circles, with 95%
confidence intervals as vertical lines. Aggregated optimized SVM
analyses also appear for radial basis (black dots), linear (green tri-
angles), polynomial (blue diamonds), and sigmoid kernels (red
squares). Estimates closer to the 45° line are more accurate.
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Hand coding parameters calibration

Assignation of specific categories to the tweets:

Category 0: Tweets which do not express leaning in favor of any
candidate or present unrelated information to the Peruvian election.
Category 1: This category expresses an explicit support to the
candidate Mr. Kuczynski.

Category 2: This category exhibits a favor to the candidate Mrs.
Fujimori.

Consider as real intention to cast a vote in favor of a specific
candidate:

e An explicit statement to vote for a candidate.

e Contains a statement in favor of a specific candidate together
with a message or a hashtag.

e Presents a negative statement opposing a candidate with a
message or a hashtag related to the rival candidate.
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Model Building

Two important aspect were analyzed to build the models:

e Time windows.
e Period hand coded data

Representative models: Model 1

SASA accumulating previous data
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Model Building

Model 2:

SASA every three weeks overlapped time window and previous training set
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Model Building

Model 3 and 4:

SASA every two weeks overlapped time window and previous training et
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Model Building

Model 5 and 6:
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Model Building

Model 7:

SASA every three days using the actualtraining set
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Model assessment

Based in two aspects:
@ Behaviors of the polls (A. Ceron L. C., 2014b).
@® Accuracy of the final results (Post electoral comparison)

Error obtained by the medels

Florencio Paucar Sedano 12/02/2016 Pisa University 21 /25



Evaluation

The evaluation of the performance of the selected model 6 follow

the next criteria:
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@ Comparison of the results of the model with official results.
® Analysis of the main events that happened during the

electoral campaign.

© Comparison of the selected model with traditional

Mass-Surveys.

FORECASTING

Pedro Pablo Kuczynski = Keiko Fujimori
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Farecasting with SASA method {27
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POST-ELECTION

Pedro Pablo Kuczynski

4391%
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Survey post-slection with SASA Official Results of OMPE [Oficina
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Comparison of the selected model with traditional
Mass-Surveys

The following official polling firms who created off-line surveys are
considered in these analysis:

e Compania Peruana de estudios de Mercado y Opinion Publica.
IPSOS Peru.

DATUM internacional.

GFK Peru.

All polling firms gave a wrong prediction one week before the
presidential election and also all the post-election off-line surveys
presented more margin of error than the SASA method.
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Conclusions

Conclusions

e The SASA method obtained accurate results since it is focuses
on the estimation of aggregated distribution of opinions.

e The appropriate model to forecasts elections in similar
contexts contemplates the use of weekly time windows
analysis and the use of hand coded data from the same period.

e The comparison between the created model and some
traditional mass-surveys permits to know its good
performance.

e The analysis of the behavior of the polls assents to correlate
some important events with the performance of the
candidates on the polls.

e The model created is appropriate and consent to verify the
accuracy of the SASA method for emerging social networks
communities such as Peru.
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