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So ccer An a Iyti CS “Sports analytics is the process that identifies and

acquires the knowledge and insight about potential
players’ performances based on the use of a variety
of data sources such as game data and individual
player performance data”

e Increase its application with the presence of massive datasets

e In the literature, there are just a few approaches that evaluate a
player's performance quality in a systematic way

e PlayeRank, a data-driven framework that offers a multi-dimensional
and role-aware evaluation of the performance of soccer players.

Joachim Gudmundsson and Michael Horton. Spatio-temporal analysis of team sports - A survey. CoRR abs/1602.06994, 2016. URL http://arxiv.org/abs/1602.06994. A '

Luca Pappalardo, Paolo Cintia, Paolo Ferragina, Emanuele Massucco, Dino Pedreschi, and Fosca Giannotti. Playerank: Data-driven performance evaluation and player
ranking in soccer via a machine learning approach. ACM Trans. Intell. Syst. Technol. 10(5), September 2019. ISSN 2157-6904. doi: 10.1145/3343172. URL
https://doi.org/10.1145/3343172.
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Can wereproduce, using
Artificial Intelligence, the way
journalists rate soccer
performance?

Ae————————
e——————

Performances = e
Artificial
Journalist
2 N\
Player's Ratings

Ratings

Predictions
1]
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Data Collection and Integration

Al. Soccer-logs

SEEEN

events.json

L
SR N

matches.json

S| —

players.json

soccer-logs for each match

A. Downloading Wyscout Data

Start of Data
Collection and —)O—
Integration

A2. Match Data

match information for each match

A3. Player Data

Wyscout
Database

player information for each team

A4. Teams Data

teams information for each team

fantacalcio
Dataset

SEEEN

teams.json

-

B. Crawling From Newspaper Websites C. Matching Players name and ids

C1. Data Integration

Crawling from websites player name, team, role
and rating

3 steps of string matching are performed to assign
to each player a player id: exact matching,
similarity matching and manual matching

Datasets are merged based on player id, team
name and match days.

pianetafanta
Dataset

fantacalcio.it
N~}

Dataset Paired
player id and player
name with all marks

Luca Pappalardo, Paolo Cintia, Alessio Rossi, Emanuele Massucco, Paolo Ferragina, Dino Pedreschi, and Fosca Giannotti. A public data set of spatio-temporal match events in soccer competitions. Scientific Data, 6(1):236, 2019.
doi: 10.1038/s41597-019-0247-7. URL https://doi.org/10.1038/s41597-019-0247-7.
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Luca Pappalardo, Paolo Cintia, Alessio Rossi, Emanuele Massucco, Paolo Ferragina, Dino Pedreschi, and Fosca Giannotti. A public data set of spatio-temporal match events in soccer competitions. Scientific Data, 6(1):236, 2019.

doi: 10.1038/s41597-019-0247-7. URL https://doi.org/10.1038/s41597-019-0247-7.

Dataset Paired
player id and player
name with all marks




Data Collection and Integration

SEEEN

events.json

L
SR N

matches.json

S| —

players.json

Al. Soccer-logs

soccer-logs for each match

Start of Data
Collection and
Integration

A. Downloading Wyscout Data
A2. Match Data

match information for each match

A3. Player Data

Wyscout
Database

player information for each team

A4. Teams Data

SEEEN

teams.json

| -

teams information for each team

fantacalcio
Dataset

B. Crawling From Newspaper Websites C. Matching Players name and ids

C1. Data Integration

Crawling from websites player name, team, role
and rating

3 steps of string matching are performed to assign
to each player a player id: exact matching,
similarity matching and manual matching

Datasets are merged based on player id, team
name and match days.

pianetafanta
Dataset

Dataset Paired
player id and player
name with all marks

fantacalcio.it
N~}

Luca Pappalardo, Paolo Cintia, Alessio Rossi, Emanuele Massucco, Paolo Ferragina, Dino Pedreschi, and Fosca Giannotti. A public data set of spatio-temporal match events in soccer competitions. Scientific Data, 6(1):236, 2019.
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Data Analysis
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Data Analysis
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Soccer-Logs wyscout | DATA

{"eventName": "Pass",

"eventSec": 2.4175, 4mmm When the eventtakes place
"matchldY: 2576335,

"matchPeriod": "1H" 4= (i.e.1H or 2H)

"playerId": 3344,

"positions": 4= Event starting and ending positions
[{"X": 49, "y": 50}, {"X": 38’ "y": 58}]’
"subEventName": "Simple pass",

“taga s

[{"id": 1801} ] , ¢ Additional meta-information(i.e.
"teamId": 3161} 1801 accurate event)



Quantity Features
Player's volume of play
during a match (e.g. total
number of passes, total
number of shots).

15 Features.
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Features Extraction




Quantity Features
Player's volume of play
during a match (e.g. total
number of passes, total
number of shots).

15 Features.

Quality Features
Player's accuracy during a
match (e.g. total number of

completed passes, total
number of failed driblings).
45 Features.

Features Extraction




Features Extraction

Quantity Features Contribution Features .
Player's volume of play Player's contribution to its
during a match (e.g. total team during a match (e.g.
number of passes, total contribution of the player w.r.t.
number of shots). to passes).
15 Features. 45 Features.

Quality Features
Player's accuracy during a
match (e.g. total number of

completed passes, total
number of failed driblings).
45 Features.




Features Extraction

Quantity Features Contribution Features
Player's volume of play Player's contribution to its Ir
during a match (e.g. total team during a match (e.g. o
number of passes, total contribution of the player w.r.t. te
number of shots). to passes).
15 Features. 45 Features.

Quality Features Dangerouseness Features
Player's accuracy during a Player’s offensiveness (in
match (e.g. total number of terms of positioning) during a

completed passes, total match (e.g. position of shotin a
number of failed driblings). match).

45 Features. 45 Features.




Features Extraction

Quantity Features Contribution Features Contextual Features
Player's volume of play Player's contribution to its Information regarding the context
during a match (e.g. total team during a match (e.g. of the match (e.g. expectation of a
number of passes, total contribution of the player w.r.t. team win, goal difference between
number of shots). to passes). teams). 12 Features.
15 Features. 45 Features.

Quality Features Dangerouseness Features 169 Features
Player's accuracy during a Player’s offensiveness (in Computed
match (e.g. total number of terms of positioning) during a

completed passes, total match (e.g. position of shotin a
number of failed driblings). match).

45 Features. 45 Features.



Can we reproduce, using Artificial Intelligence, the
way journalists rate soccer performance?

|
Extract Feature Importance

Train the model - . "t
Tramér(w)% é,ezm?a“" : ¢ —>._ Global Explanations |
2017./2018 R ’
18/20 : =
Dataset Seas | _rescozpacasacess. )
2016/2017 : .
2017/2018 Artificial Journalist —>  Local Explanations ~————
2018/2019 e

Test set Season
2018/2019
(10 maiches)

e -

v =
»[_ Predictions > \—




Different Models

Ordinal Regressor
Neural Network
XGBoost

Decision Tree

Regressor

Model Creation And Evaluation Methodology

Methodology Metrics For Evaluation

e 4 models (one for each role) e Root Mean Squared Error
e Remove Extreme Outlier (RMSE)

e Encode Contextual Variables Accuracy

e Hyperparameter Tuning e Kolmogorov-Smirnov

e Cross Validation For statistics (KS)

Evaluation

e Pearson Correlation
Coefficient (r).




Ordinal Regressor

We use performance and —Pradicted
ratings to create an — Real
artificial journalist AJ
to predict F ratings NYRYIRVAW
from performance AV Y Y NS =
r=0.73(0.68, G vs F)
KS = 0.07 (0.02, G vs F) IRy iy
RMSE = 0.48 (0.56, G vs F) | MAE = 0.33
r=0.73
RMSE = 0.48

v‘ 3 4 5 6 71 8 09

F ratings




Ordinal Regressor gives the best
results in terms of similar
distribution to real ratings.

Regarding r and RMSE has high

performance.

Special mention to Neural
Network created that achieve

similar results.

| Mid | For | Def | Gk
RMSE Ordinal Regressor 0.46 | 0.45 0.49 | 0.50
NN1 044 | 045 0.49 @ 0.49
NN2 0.55 | 0.58 | 0.61 | 0.75
NN3 0.55 | 0.69 | 0.68 | 0.96
XGBoost 0.47 | 0.50 | 0.53 | 0.53
DecisionTreeRegressor | 0.49 1 0.49 | 0.52 | 0.50
Accuracy Ordinal Regressor 0.44 1 049 | 0.41 | 0.47
NNI1 049 | 0.48 | 0.45 | 0.48
NN2 0.41 | 0.39 | 0.36 | 0.32
NN3 0.39 | 0.39 | 0.35 | 0.36
XGBoost 0.46 | 0.45 | 0.42 | 0.47
DecisionTreeRegressor | 0.43 | 0.43 | 0.39 | 0.46
KS Ordinal Regressor 0.09 1 0.08 | 0.07 0.10
NN1 0.08 | 0.12 | 0.09 | 0.13
NN2 0.11 | 0.18 | 0.12 | 0.12
NN3 0.09 | 0.12 | 0.18 | 0.14
XGBoost 0.06 0.06 | 0.07 ] 0.13
DecisionTreeRegressor | 0.14 | 0.13 | 0.18 0.10
r Ordinal Regressor 0.71 | 0.84 | 0.68 | 0.54
NN1 0.74 | 0.83 | 0.69 0.54
NN2 0.68 | 0.78 | 0.64 | 0.43
NN3 0.58 | 0.68 | 0.45 | 0.21
XGBoost 0.70 | 0.80 | 0.63 | 0.42
DecisionTreeRegressor | 0.68 | 0.81 | 0.63 | 0.49




From Black Box to Explanations

(Global, Local and Glocal Explanations)

Output=0.4 Output=0.4
+0.4
Goals =1 <«—— Goals =1
Passes =70 EXPLANATIONS ) <«—— Passes =70
‘ :/
Assist =0 d . €«—— Assist=0
+.1

Base Rate=0.1 Base Rate=0.1



SKATER, https://oracle.github.io/Skater/

Global Explanations
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Lo cal Exp I a n ati 0 n S SHAP, https://shap.readthedocs.io/en/latest/

h|gner :’ lower

model output value

-0.5118 -0.3118 -0.1118 i 0.2882 042
| ) ' »»»»l“-__ll«((«(((((

ontribution_feature = 0.07782 bIocked shot—1 total clearance—1 contextual _goal_difference = -2 contextual goal_suffered = 3 | big_match = 1 ' total_shot =1 ' failed_clear,

Lazio Player Bastos AJp=5.0 and F=5.0

0.4882 0.68682

h|gher Z lower
base value model output value

-0.6621 -0.4621 -0.2621 -0.0621 0.1379 3379 0 74
’ | ' ' >>))))))l-—

successful_action_partecipation = 13 l contextual_goal_difference = 2 total_shot =6 goal_shot = 1 goals = 1

Juventus Player Cristiano Ronaldo AJ )= 7.0and F=7.0



Local Explanations - Disagreement

mgher = Io ver
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http://www.youtube.com/watch?v=1cSkDUJ1kbw&t=136
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Glocal Explanations
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Glocal Explanations
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Summary of Interpretations and Explanations

e Midfielders and Forwards are strongly conditioned by crucial features
such as goals and assists.

e Defenders and Goalkeepers are influenced by contextual variables.
e Predictions are influenced by the absence of crucial informations.

e The features that condition player’s evaluation represent events that

catch the viewer’s attention.
A ﬁ



a Experiment

Google Forms

p—

Erls\fi?:)igfnt Extract Ratings Create Surveys
. - and Explanations Using Google
Find participant for the Matches Surveys, create Results (204
and organized Selected different responses) are
the whole Each participant document for investigate in
v@ﬁiﬁlﬂ?&tiz need to evaluate each group of order to find
ticipant in mean 3 games. participant. The out the
Pil‘ 1;1pan S In total 12 participants efficiency of the
that have to participant were divided artificial
evaluate 10 evaluated 19 into 4 different journalist
matches forwards, 18 surveys (3 for
midfielders, 28 each one).
defendersand 3

goalkeeper




Experiment Results

Different Experiment

Recognition Test:

We asked the participants to recognize, for each player, what is
the AJ prediction between the artificial journalist and real
]ournaflst ratings.

Artificial rating detected (%)
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20

0
All Roles

54.8
46.3
I 33.3

Forwards Midfielders Defenders Goalkeepers

Treatment Test:

We asked the participants to express, for each player, what is
their rating, based on their evaluation and on information we
provided to them. The possible scenarios are 3: only the AJ(
prediction, only the explanation of a prediction or the AJ
prediction and the relative explanation.
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Conclusions

The Artificial Intelligence developed is able to capture the criteria behind
human evaluation

We are able to unveil the features that influence the most the evaluations of
the artificial journalist.

It would be interesting to include more sophisticated features.

Replicate the experiments with sports journalist; in particular, redesign the
whole process of experiment.

May be a valuable support to decision of a journalist.
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