Performance
evaluation in soccer

from human mechanisms to
data-driven algorithms




How to automatically
evaluate performance”?

solution:
D e
make It data-driven
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Step #1: player performance

14 million events

150 technical features
7,304 games

1,192 professional players
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Step #2: feature weighting
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Human rating

Data-driven rating



Feature Weighting




Feature Weighting




Feature Weighting

team1

passes | XxG | pressing | accuracy | ... r?

team?2

passes | xG | pressing | accuracy

Pappalardo and Cintia, (2017) Quantifying the relation between performance and success
in soccer, Advances in Complex Systems, doi:10.1142/5021952591750014X



Step

2: feature weighting

from pymongo import MongoClient

client = MongoClient ('localhost', 27017)
events = client.wyscout.events
res = events.map reduce (map agg, reduce sum)
X, y = extract data(res)
inatclivate accurate corner missed corner acoltate, Hross
defending intercept . accelleration . foul defending key ...
auel air duel assist penalty pass duel pass
0 -8.0 5.0 2.0 -1.0 0.0 0.0 -3.0 1.0 12.0 20 ..
1 8.0 -5.0 -2.0 1.0 0.0 0.0 3.0 -1.0 -120 -2.0 ..
2 -7.0 -3.0 6.0 0.0 0.0 0.0 5.0 -1.0 -10.0 100 0
3 7.0 3.0 -6.0 0.0 0.0 0.0 -5.0 1.0 10,0 -1.0 ..
4 -13.0 -5.0 6.0 1.0 0.0 0.0 -6.0 1.0 -13.0 -2.0 ..

outcome
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Step #2: feature weighting

from playerank import Weighter
# perform the feature welighting
pw = Weilghter ()

pw.f1t (X, V)

pw.welghts
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Evaluating the weights

o stability
across competitions and roles

e cvaluation of resulting ranking



Are these weights “universal”?
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Are these weights “universal”?
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Are these weights “universal”?
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Are these weights “universal”?
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Are these weights “universal”?

All
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Step #3: role classification

é“AII antmats players are equal, but some afirrals

: players are more equal than others.”

George Orwell

It iIs meaningless to compare
two players with different roles



Step #3: role classification

from pymongo import MongoClient

# load the centers data
res = events.aggregate (pipeline)
X = extract data(res)

- pipeline = | :
{'$Sproject': {'positions': {'SarrayElemAt': ['S$positions', 0]},}}, :

{'$Sgroup': {
'x positions': {'$push': 'Spositions.x'},
'y positions': {'$push': 'Spositions.y'}
Yy
{'Sproject': {
'avg x': {'Savg': "$x positions"},

'avg y': {'Savg': "S$y positions"}



Step #3: role classification




Step #3: role classification

from playerank import RoleClusterer

# perform multi-clustering

rc = RoleClusterer (k range=(2, 20),
border threshold=0.2, random state=42)

rc.fit (X)

rc.labels




Step #3: role classification

ATTACK

A



Step #4: rating computation

performance rating r(u, g)
of u in game g :

taking into account
the number of goals

|




Step #4: rating computation

from playerank import Rater

res = events.map reduce (map aggregate, reduce sum)
X = extract data(res)

# rate the performances
rater = Rater (alpha=0.0)

rater.predict (X) \\\\\

goals are not
considered



Step #5: player ranking

The ranking of players (by role) can be computed by
aggregating over all ratings of the players

import pandas as pd

df = pd.read csv(‘evaluations.csv’)
df .groupby ('player i1d’) .mean () .sort values (
by='rating’, ascending=False)
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How to evaluate the evaluation?

algorithm expert 1 expert 2 expert 3

.//lgﬁ

® Majority agreement Q

e unanimity agreement ‘
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Step #6: the search engine




Step

O: the search engine

player r r r || club
1 | L. Messi 0.28 | 0.60 | 0.46 || Barcelona
2 | A. Robben 0.26 | 0.61 | 0.43 || Bayern M.
3 | L. Suarez 0.24 | 0.54 | 0.45 || Barcelona
4 | T. Muller 0.24 | 0.56 | 0.43 || Bayern M.
5 | Mohamed Salah || 0.24 | 0.56 | 0.43 || Liverpool
6 | R. Lukaku 0.24 | 0.56 | 0.42 || Man. Utd
7 | A.Petagna 0.23 | 0.55 | 0.42 || Atalanta
8 | D. Berardi 0.22 | 0.54 | 0.41 || Sassuolo
9 | Aduriz 0.22 | 0.55 | 0.40 || A. Bilbao
10 | G. Bale 0.22 | 0.52 | 0.43 || R. Madrid




9 DOtO

Coming soon:
Soccer Data Challenge @InternetFestival, Pisa, 12-13 October 2018

http://www.internetfestival.it/




Flow Centrality (FC)

Duch et al. (2010) Quantifying the Performance of Individual Players in a Team Activity. PLoS ONE 5(6): e10937.
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Player performance

fraction of a player’s accurate shots

Validation: 8 of the 20 players in the list of the
competition’s best players



Pass Shot Value (PSV)

Brooks et al. (2016) Developing a Data-Driven Player Ranking in Soccer using Predictive Model Weights, SIGKDD

each pass is represented as a vector size=360



Pass Shot Value (PSV)

Brooks et al. (2016) Developing a Data-Driven Player Ranking in Soccer using Predictive Model Weights, SIGKDD
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predicting if a possession ends in a shot

Validation: correlation with assists and goals



