
BUSINESS INTELLIGENCE

Data Analysis using SQL

Cube, A. Albano

BI Architecture

2

Cube, A. Albano 3

DATA ANALYSIS USING SQL

A Data warehouse is all about getting answers to business questions, in the form of
reports.

Reports must communicate pertinent information clearly and concisely.

Three ways to present information.

Traditional reports.

Pivot tables.

Charts.

There are several kinds of reporting tools on the market.

Good reporting is imperative: Even the best schema design cannot guarantee success if
answers are not delivered with useful reports.

Cube, A. Albano

Cuboids in SQL

SELECT L.city, I.brand, T.month, SUM(dollars_sold)
 FROM fact AS F, location AS L, time AS T, item AS I
 WHERE F.location_key = L.location_key AND F.time_key =

T.time_key AND
 F.item_key = I.item_key
GROUP BY L.city, I.brand, T.month

MeasureAggregate

Star-Join

Hierarchy levels

Order or pivoting

Business Intelligence Lab

Cube, A. Albano

Roll-up

How many cuboids?

Product

Time

All

Time

Time

Product

All
All

Drill-Down

Roll-up

Drill-Down

Drill-Down

Roll-up

Business Intelligence Lab

Cube, A. Albano

6

Data Cube

(extended cube, hypercube)

Total annual sales
of TVs in U.S.A. Date

C
ou

nt
ry

*

*
TV

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr
U.S.A

Canada

Mexico

*

Cube, A. Albano

Data cube in SQL Server

SELECT L.city, I.brand, T.month, SUM(dollars_sold)
 FROM fact AS F, location AS L, time AS T, item AS I
 WHERE F.location_key = L.location_key AND F.time_key =

T.time_key AND F.item_key = I.item_key
GROUP BY CUBE(L.city, I.brand, T.month)

MeasureAggregate

Star-Join
Hierarchy levels

Order or
pivoting

GROUP BY ROLLUP(L.city, I.brand, T.month)
- all initial subsequences of the group-by attributes

Business Intelligence Lab

Cube, A. Albano

Slice and Dice

8

Product

Time

Slice

Product

Time

Product =A,B,C

Business Intelligence Lab

Cube, A. Albano

Slice in SQL Server

9

SELECT L.city, I.brand, T.month, SUM(dollars_sold)
 FROM fact AS F, location AS L, time AS T, item AS I
 WHERE F.location_key = L.location_key AND F.time_key =

T.time_key AND
 F.item_key = I.item_key AND
 T.year = 2016
GROUP BY CUBE(L.city, I.brand, T.month)

MeasureAggregate

Star-Join

Hierarchy levels

Order or
pivoting

Slice

Business Intelligence Lab

Cube, A. Albano

Star-join executions in SQL Server

• Star-join optimization
• automatically detected (vs to be setup in Oracle)

• Bitmap join indexes
• not available (vs available in Oracle)

• Columnstore indexes (since SQL Server 2012)

• see docs
•  http://msdn.microsoft.com/en-us/library/gg492088.aspx

• Example (on a copy of sales_fact)
•  CREATE CLUSTERED COLUMNSTORE INDEX cci_sales ON sales_fact_copy

Business Intelligence

10

Cube, A. Albano 11

REPORTING TOOLS

Product Type

Wine
...

Drag
and
drop

Year

2010
...

Total Revenue

 56,000
 ...

Total Cost

 45,000
 ...

Total Margin

 11,000
 ...

Cube, A. Albano 12

SIMPLE REPORTS WITH SQL

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Slice

Rollup & drill-down

Pivoting

Cube, A. Albano

AIRLINE COMPANIES: DATA ANALYSIS

13

SELECT FlightCode, CompanyName, Class, Time, SUM(UnoccupiedSeats) As TotalUnoccupiedSeats
FROM FlightClassSeats f, DepartureTime t, Company c
WHERE f.DepartureTimeFK = t.DepartureTimePK AND f.CompanyFK = c.CompanyPK and year = 2015
GROUP BY FlightCode, CompanyName, Class, Time,

Cube, A. Albano

AIRLINE COMPANIES: DATA ANALYSIS

14

SELECT FlightCode, CompanyName, Class, City, SUM(UnoccupiedSeats) As TotalUnoccupiedSeats
FROM FlightClassSeats f, DepartureTime t, City c
WHERE f.DepartureTimeFK = t.DepartureTimePK AND f.DepartureCityFK = c.CityPK

 AND Class=‘Business’ AND year = 2015
GROUP BY FlightCode, CompanyName, Class, City

SELECT year, month, country, SUM(UnoccupiedSeats) As TotalUnoccupiedSeats,
 SUM(Revenue) As TotalRevenue

FROM FlightClassSeats f, DepartureTime t, City c
WHERE f.DepartureTimeFK = t.DepartureTimePK AND f.DestinationCityFK= c.CityPK

 AND CompanyName=‘Alitalia’
GROUP BY year, month, country

Cube, A. Albano 15

SIMPLE REPORTS WITH SUBTOTALS

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Cube, A. Albano 16

SIMPLE REPORTS WITH SUBTOTALS IN SQL

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Cube, A. Albano 17

SQL: OPERATOR ROLLUP

ROLLUP compute one path
 through lattice

(A,B)
(A) subtotals
() totals

GROUP BY ROLLUP(A,B)
Important the (attributes order)
Semantics: Union of 3 groupings:

Cube, A. Albano 18

SIMPLE REPORTS WITH SUBTOTALS: ROLLUP

2

3

1 (Brand, Product)

(Brand)

()

Cube, A. Albano 19

SIMPLE REPORTS WITH SUBTOTALS: CROSS-TABULATION

Cube, A. Albano 20

SQL: OPERATOR CUBE

CUBE compute a sub-lattice

(A,B)
(A) subtotals
(B) subtotals
() totals

GROUP BY CUBE(A,B)
Important: the (attributes order) doesn’t matter
Semantics: Union of 4 groupings:

Cube, A. Albano 21

SIMPLE REPORTS WITH SUBTOTALS: CUBE

2

1

4

3

(Brand, Product)
(Brand)

(Product)

()

Cube, A. Albano 22

MODERATELY DIFFICULT REPORTS
WITH COMPARISON BETWEEN COLUMNS (VARIANCE REPORT)

A product may have been sold in one year, but not in the other !

Delta = 100 x (Revenue2009 - Revenue2008)/Revenue2009

Cube, A. Albano 23

JOIN

A B C

1 a x

3 c y

A B C

1 a x

2 b y

SELECT *
FROM R
 NATURAL JOIN
 S;

A B

1 a

2 b

3 c

R

A C

1 x

3 y

5 z

S

A C

1 x

2 y

S

A B

1 a

2 b

R

SELECT *
FROM R
 NATURAL JOIN
 S;

Cube, A. Albano 24

JOIN

SELECT *
FROM R
 FULL JOIN
 S USING (A);

A B C

1 a x

2 b

3 c y

5 z

SELECT *
FROM R
 NATURAL FULL JOIN
 S;

A B

1 a

2 b

3 c

R

A C

1 x

3 y

5 z

S

Cube, A. Albano 25

SOLUTION USING VIEWS

CREATE VIEW VRevenue09 AS
SELECT Brand, Product, SUM(Revenue) AS Revenue2009
FROM Sales WHERE Year(Data) = 2009
GROUP BY Brand, Product;

CREATE VIEW VRevenue08 AS
SELECT Brand, Product, SUM(Revenue) AS Revenue2008
FROM Sales WHERE Year(Data) = 2008
GROUP BY Brand, Product;

SELECT VRevenue09.Brand AS Brand, VRevenue09.Product AS Product, Revenue2009, Revenue2008,
 CASE
 WHEN Revenue2009 IS NULL THEN -100
 WHEN Revenue2008 IS NULL THEN 100
 ELSE ROUND(100*(Revenue2009 - Revenue2008)/Revenue2009) END AS Delta
FROM VRevenue09 FULL JOIN VRevenue08 USING(Brand, Product)
ORDER BY Brand, Product

Cube, A. Albano 26

SOLUTION USING ‘WITH’ CLAUSE

Cube, A. Albano 27

EXERCISE: MODERATELY DIFFICULT REPORTS
WITH COMPARISON ACROSS AGGREGATION LEVELS

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Cube, A. Albano 28

VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL:
RUNNING TOTALS
Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Cube, A. Albano 29

VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL:
RANK

Which are the best 5 products sold in Toscana?

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Cube, A. Albano

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

We want to partition the customers into four groups:
– Top5%, with 5% of customers with the highest amount of revenues.
– Next15%, with 15% of other customers with the highest amount of revenues.
– Middle30%, with 30% of other customers with the highest amount of revenues.
– Bottom50%, with 50 % of the customers with the lowest amount of revenues.
For each customer group we want to know their number, and the percentage
of the sum of their revenues compared to total revenue of all sales.

30

VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL

Group Number of
customers

Percent of total
revenue

Top5% 1 20
Next15% 3 50
Middle30% 6 20
Bottom50% 10 10

Cube, A. Albano 31

VERY DIFFICULT REPORTS WITHOUT ANALYTIC SQL
Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Monthly Total Revenue

Moving Average Monthly Total Revenue (Window 3 or 5)

Cube, A. Albano 32

ANALYTIC SQL

Syntax

Cube, A. Albano

Intuition: Partition By

33

Cube, A. Albano

Intuition: without Partition By

34

Cube, A. Albano 35

ANALYTIC SQL

Execution order

Cube, A. Albano 36

RANK

SELECT Customer, Product, SUM(Revenue) AS TotalRev,

FROM Sales WHERE Customer IN (‘C1’, ‘C2’)
GROUP BY Customer, Product ORDER BY TotalRev DESC;

Rank
 7
 6
 5
 4 3
 2
 1

Customer Product TotalRev
 C1

 P1
 1100

 C1 P3
 1000

 C2
 P1

 1000
 C2

 P2
 900

 C2
 P4

 800
 C1

 P2
 200

 C2 P3
 200

 RANK () OVER (ORDER BY SUM(Revenue)) AS Rank

Cube, A. Albano 37

RANK WITH PARTITIONS

SELECT Customer, Product, SUM(Revenue) AS TotalRevenue,

FROM Sales WHERE Customer IN (‘C1’, ‘C2’)
GROUP BY Customer, Product;

RANK () OVER (PARTITION BY Customer
 ORDER BY SUM(Revenue) DESC) AS Rank

Customer Product TotalRev
 C1

 P1
 1100

 C1 P3
 1000

 C1
 P2

 200
 C2

 P1
 1000

 C2
 P2

 900
 C2

 P4
 800

 C2 P3
 200

Rank
 1
 2
 3
 1
 2
 3
 4

Cube, A. Albano

RANK vs DENSE_RANK vs ROW_NUMBER

•  Consider the values in the ascending order
•  (10; 20; 20; 30; 30; 40)

•  RANK() of a value is 1 + the number of values that strictly precedes it
•  ranks (1; 2; 2; 4; 4; 6)

•  DENSE_RANK() of a value is 1 + the number of distinct values that precedes it
•  dense ranks (1; 2; 2; 3; 3; 4)

•  PERCENT_RANK() is (RANK() – 1) / (TotalRows – 1)
•  percent ranks (0; 0.2; 0.2; 0.6; 0.6; 1)

•  ROW_NUMBER() is the row number
•  row numbers (1; 2; 3; 4; 5; 6)

•  CUME_DIST() is ROW_NUMBER() / TotalRows
•  cumulative distribution (0.16; 0.33; 0.5; 0.67; 0.83; 1)

•  NTILE(3) is the tertile of the value (3 is a parameter, can be any integer)
•  tertiles (1; 1; 2; 2; 3; 3)

38

Cube, A. Albano

OTHER ANALYTIC FUNCTIONS

•  COUNT(), SUM(), AVG(), MIN(), MAX() … and all standard aggregates

Sales(Brand, Product, Revenue)

WITH s AS (SELECT Brand, Product,SUM(Revenue) AS prodRevenue
FROM sales
GROUP BY Brand, Product)
SELECT Brand, Product, prodRevenue,

100 * prodRevenue / SUM(prodRevenue) OVER(PARTITION BY Brand) AS PctOverBrand,
100 * prodRevenue / SUM(prodRevenue) OVER() AS PctOverTot

FROM s

39

Brand Product prodRevenue PctOverBrand PctOverTot

B1 P1 40 40 20
B1 P2 60 60 30
B2 P3 20 20 10
B2 P4 80 80 40

SELECT Brand, Product, SUM(Revenue) AS prodRevenue,
100 * SUM(Revenue) / SUM(SUM(Revenue)) OVER(PARTITION BY Brand) AS PctOverBrand,
100 * SUM(Revenue) / SUM(SUM(Revenue)) OVER() AS PctOverTot

FROM sales
GROUP BY Brand, Product

Cube, A. Albano

OTHER ANALYTIC FUNCTIONS

•  LAG(attribute, offset, default) and LEAD(attribute, offset, default)

•  The value of attribute in offset rows before (LAG) or after (LEAD)

Store Year TotalRev
 S1

 2015
 1100

 S1 2014
 1000

 S1
 2013

 200
 S2

 2015
 1000

 S2
 2014

 900
 S2

 2013
 800

 S2 2012
 200

PrevRev
 1000
 200
 0
 900
 800
 200
 0

SELECT Store, Year, TotalRev,
 LEAD(TotalRev, 1, 0) OVER(PARTITION BY Store ORDER BY Year DESC) AS PrevRev,
FROM TotalSales
ORDER BY Store, Year

Cube, A. Albano 41

WINDOWING

Windowing functions are used to compute cumulative, moving and
centered aggregates.

Window functions add a value to each row that depends on the other
rows in the window.

Examples of window specifications:

ROWS UNBOUNDED PRECEDING. The window begin with the first
record of the partition and ends with the current record.

ROWS BETWEEN ... PRECEDING AND ... FOLLOWING. The window
include all records that fall within the given offset.

Cube, A. Albano 42

WINDOWING EXAMPLE

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Cube, A. Albano 43

WINDOWING EXAMPLE

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Cube, A. Albano 44

EXAMPLE

A moving average of total revenue, with a moving window of 3 months, by month.

Result visualization in Oracle...

Sales(Customer, Product, Brand, Date, City, Region, Area, Quantity, Revenue, Margin)

Cube, A. Albano

ANALYTIC FUNCTIONS IN PENTAHO DATA INTEGRATION

45

Cube, A. Albano

OR CONNECT TO SQL SERVER 2014 ON KDD.DI.UNIPI.IT
LOGIN: sobigdata PWD: pisa

46

Cube, A. Albano 47

SUMMARY

SQL has been extended for OLAP operations, because of intensive data
warehouse applications during the last decade.

Make sure you understand SQL. It is much more than syntax.

SQL is not select-from-where only.

Grouping and aggregation is a major part of SQL.

Cube, A. Albano

Open Lab

•  Redo exercises on ETL using SQL queries instead

48

Cube, A. Albano

Exercise

•  FoodMart data mart

•  Write a SQL query that returns all constant customers in June 1998

•  Constant: with at least two baskets per month for at least two months in the last
four months.

49

Cube, A. Albano

Exercise

WITH salesagg AS (
SELECT customer_id, COUNT(DISTINCT s.time_id) AS npurchases
FROM sales_fact s, time_by_day t
WHERE s.time_id = t.time_id and

 (t.the_year*12 + t.month_of_year) BETWEEN 1998*12+6-3 AND
1998*12+6
GROUP BY customer_id, the_year, month_of_year

)
SELECT customer_id
FROM salesagg
WHERE npurchases > 1
GROUP BY customer_id
HAVING Count(*) > 1

50

