Strumenti Utente

Strumenti Sito


dm:start

Differenze

Queste sono le differenze tra la revisione selezionata e la versione attuale della pagina.

Link a questa pagina di confronto

Entrambe le parti precedenti la revisioneRevisione precedente
Prossima revisione
Revisione precedente
dm:start [08/08/2024 alle 12:38 (16 mesi fa)] Salvatore Ruggieridm:start [01/12/2025 alle 10:55 (12 giorni fa)] (versione attuale) – [News] Riccardo Guidotti
Linea 1: Linea 1:
-====== Data Mining A.A. 2023/24 ======+====== Data Mining A.A. 2025/26 ======
  
 ===== DM1 - Data Mining: Foundations (6 CFU) ===== ===== DM1 - Data Mining: Foundations (6 CFU) =====
Linea 15: Linea 15:
  
 Teaching Assistant Teaching Assistant
-  * **Andrea Fedele**+  * **Alessio Cascione**
     * KDDLab, Università di Pisa     * KDDLab, Università di Pisa
-    * [[https://www.linkedin.com/in/andrea-fedele/?originalSubdomain=it]] +    * [[https://www.linkedin.com/in/alessio-cascione-a77224159/?originalSubdomain=it]] 
-    * [[andrea.fedele@phd.unipi.it]]  +    * [[alessio.cascione@phd.unipi.it]]   
 ===== DM2 - Data Mining: Advanced Topics and Applications (6 CFU) ===== ===== DM2 - Data Mining: Advanced Topics and Applications (6 CFU) =====
  
Linea 28: Linea 29:
  
 Teaching Assistant Teaching Assistant
-  * **Andrea Fedele**+  * **Alessio Cascione**
     * KDDLab, Università di Pisa     * KDDLab, Università di Pisa
-    * [[https://www.linkedin.com/in/andrea-fedele/?originalSubdomain=it]] +    * [[https://www.linkedin.com/in/alessio-cascione-a77224159/?originalSubdomain=it]] 
-    * [[andrea.fedele@phd.unipi.it]]   +    * [[alessio.cascione@phd.unipi.it]]   
-    * Meeting: https://calendly.com/andreafedele/+
 ====== News ====== ====== News ======
 +     * **[01.12.2025] The lecture of Thursday 04/12/2025 is moved to Friday 05/12/2025 9-11 in room C (project presentation of Prof.ssa Pierotti will start at 11 after DM lecture). The last lecture will be held on Tuesday 09/12/2025 9-11 in room M1 (as Monday 08/12/2025 is holiday), while the lecture of P4DS is moved to 09/12/2025 16-18 in room C1**.
 +     * [19.11.2025] The lecture of Thursday 20/11/2025 will be held in room N1 due to not usability of room E. 
 +     * [07.10.2025] The lecture of Thursday 10/10/2025 is canceled due to the UniPi Orienta event. The recovery lecture is Tuesday 14/10/2025 9-11 room M1. 
 +     * [06.10.2025] Link to Project Groups Registration DM1 [25/26] (max 3 students for each group - access with your University of Pisa account, deadline 17/10/2025: [[https://docs.google.com/spreadsheets/d/1JX3VRwcZZFcTdpiguEwPsR_p4gDyRd7J89O84J7AeyY/edit?gid=0#gid=0| Link]]
 +     * [28.07.2025] Lectures will start on Monday 29 September 2025 at 09.00 room E. Lectures will be in presence only. Registrations of the lectures of past years can be found at the bottom of this web page.
 +    
 +     
 +
 +----
  
-     * **[24.05.2024]** When registering for the oral exam please specify in the notes DM1 if you do not want to do DM2 (that is assumed by default). After having booked it please contact Prof. Pedreschi to agree on the exam date (put Prof. Guidotti and Andrea Fedele in cc). There will be no agenda for DM1. 
-     * [03.05.2024] Next lecture of DM2 will be as usual on Monday 06/05 from 9 to 11 in room C. 
-     * [19.01.2024 DM2 Lectures will start on Mon 19/02, only for that lecture the time will be 14-16 instead of 9-11. 
-     * [13.10.2023] To schedule meeting with the Teaching Assistant you can use: https://calendly.com/andreafedele/ 
-     * [20.09.2023] Recordings of the lectures can be found on the web pages of the course for the years 2020/2021 and 2021/2022 (see links at the bottom of this page) 
-     * [20.09.2023] Thursday 21 September there will be no lecture. 
-     * [11.09.2023] Lectures will start on Monday 18 September 2023 at 11.00 room C1. 
-     * [11.09.2023] Lectures will be in presence only. Registrations of the lectures of past years can be found at the bottom of this web page. 
-     * [11.09.2023] Project Groups [[https://docs.google.com/spreadsheets/d/10R5AcqdlXsqTAxSys6zyqArvdytq4HH6Ik8Uy-NHkQ4/edit?usp=sharing|link]] 
-     * [11.09.2023] MS Teams [[https://teams.microsoft.com/l/team/19%3a7uEgK_aekrBFuOsbREccAa-tfqeSwvfBemfK_lG6HA01%40thread.tacv2/conversations?groupId=84cc4fec-41fc-4208-a9d4-a02675216d22&tenantId=c7456b31-a220-47f5-be52-473828670aa1|link]]  
 ====== Learning Goals ====== ====== Learning Goals ======
   * DM1   * DM1
Linea 71: Linea 71:
  
 ^  Day of Week  ^  Hour  ^  Room  ^  ^  Day of Week  ^  Hour  ^  Room  ^ 
-|  Monday  |  11:00 - 13:00  |  C1   |  +|  Monday  |  09:00 - 11:00  |    |  
-|  Wednesday  |  11:00 - 13:00  |  C1  +|  Thursday  |  09:00 - 11:00  |   
  
 **Office hours - Ricevimento:** **Office hours - Ricevimento:**
  
   * Prof. Pedreschi   * Prof. Pedreschi
-      * Monday 16:00 - 18:00 +      * Monday 15:00-17:00 or Appointment by email 
-      * Online+      * Room 318 Dept. of Computer Science or MS Teams 
   * Prof. Guidotti   * Prof. Guidotti
-      * Tuesday 16:00 - 18:00 or Appointment by email+      * Thursday 16:00 - 18:00 or Appointment by email
       * Room 363 Dept. of Computer Science or MS Teams       * Room 363 Dept. of Computer Science or MS Teams
 +
 +
 +  * Alessio Cascione
 +      * Google Meet slot - https://calendly.com/alessio-cascione-phd/30min 
 +      * Alternative appointment by email
 +      * I will be out of office from 05/12/2025 to 15/12/2025, checking emails and answering  sporadically. 
  
      
Linea 90: Linea 97:
  
 ^  Day of Week  ^  Hour  ^  Room  ^  ^  Day of Week  ^  Hour  ^  Room  ^ 
-|  Monday   |  09:00 - 11:00  |    |  +|  Monday   |  11:00 - 13:00  |    |  
-|  Wednesday  |  11:00 - 13:00  |   |  +|  Wednesday  |  09:00 - 11:00  |   |  
  
 **Office Hours - Ricevimento:** **Office Hours - Ricevimento:**
Linea 114: Linea 121:
   * The slides used in the course will be inserted in the calendar after each class. Most of them are part of the slides provided by the textbook's authors [[http://www-users.cs.umn.edu/~kumar/dmbook/index.php#item4|Slides per "Introduction to Data Mining"]].   * The slides used in the course will be inserted in the calendar after each class. Most of them are part of the slides provided by the textbook's authors [[http://www-users.cs.umn.edu/~kumar/dmbook/index.php#item4|Slides per "Introduction to Data Mining"]].
        
 +   
 +===== FAQ =====
  
-  +For the academic year 2025/2026, we make available a document containing **frequently asked questions (FAQs)** about the project at the end of the lecture. 
 +Please consult this document first, as your question may already be answered there. 
 +The FAQ will be updated regularly after each lecture with new relevant questions from students. 
 + 
 +Check the document: 
 +https://docs.google.com/document/d/1OLa02xofxRPj1zUJ7zm_boxL_ZeAFR1HWCB4lgozgz8/edit?usp=sharing 
 + 
 + 
 + 
 +===== Recording past years ===== 
 + 
 +Link to past years recordings (incrementally updated with respect to the current lectures of the course) 
 + 
 +https://unipiit-my.sharepoint.com/:f:/g/personal/a_cascione_studenti_unipi_it/IgCdnqZe6wTKQJR_4yVrXE3gAcmqWHBSxvxW0HtsA596LWQ?e=OCa34K
 ===== Software===== ===== Software=====
  
Linea 127: Linea 149:
   * Didactic Data Mining [[http://matlaspisa.isti.cnr.it:5055/Help| DDMv1]], [[https://kdd.isti.cnr.it/ddm/#/| DDMv2]]    * Didactic Data Mining [[http://matlaspisa.isti.cnr.it:5055/Help| DDMv1]], [[https://kdd.isti.cnr.it/ddm/#/| DDMv2]] 
    
-====== Class Calendar (2023/2024) ======+====== Class Calendar (2025/2026) ======
  
 ===== First Semester (DM1 - Data Mining: Foundations) ===== ===== First Semester (DM1 - Data Mining: Foundations) =====
  
 ^ ^ Day ^ Time ^ Room ^ Topic ^ Material ^ Lecturer ^ ^ ^ Day ^ Time ^ Room ^ Topic ^ Material ^ Lecturer ^
-|01.| 18.09.2023 11-13 |C1Overview, Introduction {{ :dm:00_dm1_introduction_2023_24.pdf Intro}} Pedreschi+  | 15.09.2025 |          |  | No Lecture |  |  | 
-|   20.09.2023 11-13 |  | No Lecture |  |  | +|   | 18.09.2025 | |  No Lecture  
-|02.| 25.09.2023 | 11-13 |C1Lab. Introduction to Python | {{ :dm:dm1_lab01_python_basics.zip Python Basic}} | Guidotti+|   | 22.09.2025 | |  | No Lecture |  |  
-|03.| 27.09.2023 | 11-13 |C1Lab. Data Understanding | {{ :dm:dm1_lab02_data_understanding.zip Data Understanding}} | Guidotti+|   25.09.2025 | |  | No Lecture |  |  | 
-|04.| 02.10.2023 11-13 |C1Data Understanding | {{ :dm:01_dm1_data_understanding_2023_24.pdf Data Understanding}} | Guidotti+|01.| 29.09.2025 09-11 | Overview, Introduction | {{ :dm:00_dm1_introduction_2025_26.pptx.pdf Intro}} | Pedreschi 
-|05.| 04.10.2023 11-13 |C1| Data Understanding & Preparation | {{ :dm:01_dm1_data_understanding_2023_24.pdf | Data Understanding}}, {{ :dm:02_dm1_data_preparation_2023_24.pdf | Data Preparation}} | Pedreschi| +|02.| 02.10.2025 09-11 | The KDD process | {{ :dm:00_dm1_introduction_2025_26.pptx.pdf Intro}} | Pedreschi 
-|06.| 09.10.2023 11-13 |C1| Data Preparation & Data Similarity | {{ :dm:02_dm1_data_preparation_2023_24.pdf | Data Preparation}}, {{ :dm:03_dm1_data_similarity_2023_24.pdf | Data Similarity}} | Pedreschi+|03.| 06.10.2025 09-11 Introduction to Python | {{:dm:06.10.25_python_basic_2025_lecture_in_class.zip |}} | Pedreschi, Cascione 
-|07.| 11.10.2023 | 11-13 |C1| Data Similarity & Lab. Data Understanding | {{ :dm:03_dm1_data_similarity_2023_24.pdf | Data Similarity}}, {{ :dm:dm1_lab02_data_understanding.zip | Data Understanding}} | Pedreschi+  | 09.10.2025 |  |  | No Lecture (UNIPI Orienta) |  |  | 
-|08.| 16.10.2023 11-13 |C1| Introduction to Clustering, K-Means | {{ :dm:04_dm1_clustering_intro_2023_24.pdf | Intro_Clustering}}, {{:dm:05_dm1_kmeans_2023_24.pdf | K-Means }} | Pedreschi+|04.| 13.10.2025 09-11 | Data Understanding | {{ :dm:01_dm1_data_understanding_2025_26.pdf | Data Understanding }} | Pedreschi | 
-|09.| 18.10.2023 11-13 |C1| Clustering Validation, Hierarchical Clustering | {{ :dm:04_dm1_clustering_intro_2023_24.pdf | Intro_Clustering}}, {{ :dm:06_dm1_hierarchical_clustering_2023_24.pdf Hierarchical}} | Pedreschi+|05.| 14.10.2025 09-11 | C1 | Data Preparation | {{ :dm:02_dm1_data_preparation_2025_26.pdf | Data Preparation}}, {{ :dm:03_dm1_data_similarity_2025_26.pdf | Data Similarity}} | Guidotti 
-|10.| 23.10.2023 | 11-13 |C1Density-based Clustering | {{ :dm:07_dm1_density_based_2023_24.pdf | Density-based Clustering}} | Pedreschi+|04.| 16.10.2025 09-11 | | Data Understanding Lab| {{ :dm:16.10.25_data_understanding_2025_lecture_in_class.zip |}} | Guidotti, Cascione 
-|11.| 25.10.2023 | 11-13 |C1Lab. Clustering | {{ :dm:dm1_lab03_clustering.zip | Clustering}}| Guidotti| +|06.| 20.10.2025 09-11 Data Similarity and Introduction to Clustering | {{ :dm:03_dm1_data_similarity_2025_26.pdf | Data Similarity}}, {{ :dm:04_dm1_clustering_intro_2025_26.pdf | Introduction to Clustering}} | Guidotti 
-|12.| 30.10.2023 | 11-13 |C1Ex. Clustering | {{ :dm:ex1_dm1_clustering_2023_24.pdf ExClustering}}| Guidotti+|07.| 23.10.2025 09-11 Centroid-based Clustering Algorithm | {{ :dm:05_dm1_kmeans_2025_26.pdf | Centroid-based Clustering}} | Guidotti 
-  | 01.11.2023 11-13 |  | No Lecture |  |  | +|08.| 27.10.2025 09-11 | Hierarchical Clustering Algorithm | {{ :dm:06_dm1_hierarchical_clustering_2025_26.pdf | Hierarchical Clustering}} | Guidotti 
-|13.| 06.11.2023 | 11-13 |C1| Intro Classification, kNN[[https://unipiit.sharepoint.com/sites/a__td_61280/Shared%20Documents/General/Recordings/Lecture%2006_11_2023-20231106_110052-Registrazione%20della%20riunione.mp4?web=1|(video)]] | {{ :dm:08_dm1_classification_intro_2023_24.pdf | Intro_Classification}}{{ :dm:09_dm1_knn_2023_24.pdf | kNN}}| Guidotti+|09.| 27.10.2025 09-11 | Density-based Clustering Algorithm | {{ :dm:07_dm1_density_based_2025_26.pdf Density-based Clustering}} | Guidotti | 
-|14.| 08.11.2023 11-13 |C1| Naive BayesExercises | {{ :dm:10_dm1_naive_bayes_2023_24.pdf | Naive Bayes}} | Guidotti+|10.|03.11.2025 09-11 | | Clustering Lab | {{ :dm:03.11.25_clustering_2025_lecture_in_class.zip |}} | Pedreschi, Cascione 
-|15.| 13.11.2023 11-13 |C1Model Evaluation | {{ :dm:11_dm1_classification_eval_2023_24.pdf | Model Evaluation}} | Guidotti+|11.|04.11.2025 09-11 | C1 | Classification: Overview and K-Nearest Neighbours | {{ :dm:08_dm1_classification_intro_2024_25.pptx.pdf | Classification Overview }} {{ :dm:09_dm1_knn_2024_25.pptx.pdf | KNN Classifier }} | Pedreschi 
-|16.| 15.11.2023 11-13 |C1Model Evaluation Exercises & Lab | {{ :dm:dm1_lab04_classification_regression.zip Classification}} | Guidotti+|12.|06.11.2025 09-11 Classification: Naive Bayes Classifier and Exercises | {{ :dm:10_dm1_naive_bayes_2024_25.pptx.pdf | Naive Bayes }} | Pedreschi 
-  | 20.11.2023 | 11-13 |  | No Lecture |  |  | +|13.|10.11.2025 09-11 Classification: Evaluation | {{ :dm:11_dm1_classification_eval_2024_25.pptx.pdf | Model evaluation }} | Pedreschi 
-|17.| 22.11.2023 | 11-13 |C1| Decision Tree Classifier {{ :dm:12_dm1_decision_trees_2023_24.pdf | Decision Tree}} | Pedreschi| +|14.|13.11.2025 09-11 Classification: Decision Trees (1) | {{ :dm:12_dm1_decision_trees_2024_25.pptx.pdf Decision trees }} | Pedreschi 
-|18.| 27.11.2023 11-13 |C1| Decision Tree Classifier {{ :dm:12_dm1_decision_trees_2023_24.pdf | Decision Tree}} | Pedreschi| +|15.|17.11.2025 09-11 | D5 Classification: Decision Trees (2)  | Pedreschi | 
-|19.| 29.11.2023 | 11-13 |C1Exercises and Lab. Decision Tree Classifier | {{ :dm:dm1_lab04_classification.zip | Decision Tree}} | Guidotti| +|16.|18.11.2025 09-11 | C1 | Classification: Decision Trees (3)  | Pedreschi | 
-|20.| 04.12.2023 | 11-13 |C1Decision Tree Classifier, Exercises and Lab | {{ :dm:12_dm1_decision_trees_2023_24.pdf | Decision Tree}} | Pedreschi| +|17.|20.11.2025 09-11 | N1 Classification Lab | {{ :dm:20.11.25_classification_2025_lecture_in_class.zip |}} | Guidotti, Cascione 
-|21.| 06.12.2023 11-13 |C1Intro Regression & Lab. Regression | {{ :dm:12_dm1_linear_regression_2023_24.pdf | Regression}}{{ :dm:dm1_lab05_regression.zip Regression}} Guidotti+|18.|24.11.2025 09-11 | Pattern Mining: Apriori | {{ :dm:14_dm1_pattern_mining_2024_25.pptx.pdf | Pattern mining & association rules }} | Pedreschi | 
-|22.| 11.12.2023 11-13 |C1Into Pattern Mining and Apriori | {{ :dm:13_dm1_pattern_mining_2023_24.pdf | Pattern Mining}} | Pedreschi| +|19.|25.11.2025 09-11 Pattern MiningLift, InterestMultiattribute  Pedreschi 
-|23.| 13.12.2023 16-18 |C1Apriori & LabPattern Mining | {{ :dm:13_dm1_pattern_mining_2023_24.pdf Pattern Mining}}, {{ :dm:dm1_lab06_pattern_mining.zip | Pattern Mining}}  | Pedreschi| +|20.|27.11.2025 09-11 Regression: Problem, Linear, KNN, Decision Tree | {{ :dm:13_dm1_linear_regression_2024_25.pptx.pdf | Regression }} | Pedreschi | 
-|24.| 18.12.2023 | 11-13 |C| FP-Growth and Exercises | {{ :dm:13_dm1_pattern_mining_2023_24.pdf | Pattern Mining}} | Guidotti|+|21.|01.12.2025 09-11 | Lab on Regression and Pattern Mining; FPGROWTH| {{ :dm:01.12.25_regression_2025_lecture_in_class.zip |}}, {{ :dm:01.12.25_pattern_mining_2025_lecture_in_class.zip |}}{{ :dm:14_dm1_pattern_mining_2024_25.pptx.pdf | FPGROWTH }}| Guidotti, Cascione | 
 + 
 ===== Second Semester (DM2 - Data Mining: Advanced Topics and Applications) ===== ===== Second Semester (DM2 - Data Mining: Advanced Topics and Applications) =====
  
 ^ ^ Day ^ Time ^ Room ^ Topic ^ Material ^ Lecturer ^ ^ ^ Day ^ Time ^ Room ^ Topic ^ Material ^ Lecturer ^
-|01.| 19.02.2024 | 14-16 |C| Overview, Rule-based Models | {{ :dm:14_dm2_intro_2023_24.pdf | Introduction}}, {{ :dm:dm2_project_guidelines_23_24.pdf | Guidelines}}, {{ :dm:15_dm2_rule_based_classifier_2023_24.pdf | Rule-based Models }} | Guidotti| +|01.| 18.02.2025 | 14-16 |A1| Overview, Imbalanced Learning | {{ :dm:16_dm2_intro_2024_25.pdf | Introduction}}, {{ :dm:dm2_project_guidelines_24_25.pdf | Guidelines}}, {{ :dm:17_dm2_imbalanced_learning_2024_25.pdf | Imbalanced Learning}}, [[https://unipiit.sharepoint.com/:v:/s/a__td_64992/EWrX2F6xAS9JtNXh1l5JIgMByAU0eMWBFr5sbGIYL3jakA|Link]] | Guidotti| 
-|   | 21.02.2024 |  | | No Lecture |  |  | +
-|   | 26.02.2024 |  | | No Lecture |  |  | +
-|02.| 28.02.2024 | 11-13 |C| Sequential Pattern Mining | {{ :dm:16_dm2_sequential_pattern_mining_2023_24.pdf | Sequential Pattern Mining}}, {{ :dm:GSP.zip | GSP}} | Guidotti| +
-|03.| 04.03.2024 | 9-11 |C| Sequential Pattern Mining | {{ :dm:16_dm2_sequential_pattern_mining_2023_24.pdf | Sequential Pattern Mining}}, {{ :dm:GSP.zip | GSP}} | Guidotti| +
-|04.| 06.03.2024 | 11-13 |C| Transactional Clustering | {{ :dm:17_dm2_transactional_clustering_2023_24.pdf | Transactional Clustering}} | Guidotti| +
-|05.| 11.03.2024 | 9-11 |C| Time Series Similarity | {{ :dm:18_dm2_time_series_similarity_2023_24.pdf | Time Series Similarity}}, {{ :dm:dm2_lab00_spotify.zip | TS_Load}}, {{ :dm:dm2_lab01_dist_transf.zip | TS_Similarity}} | Guidotti| +
-|06.| 13.03.2024 | 11-13 |C| Time Series Approximation | {{ :dm:19_dm2_time_series_clustering_approximation_2023_24.pdf | Time Series Clustering}}, {{ :dm:dm2_lab02_approx_clust.zip | TS_Approx_Clustering}} | Guidotti| +
-|07.| 18.03.2024 | 9-11 |C| Time Series Clustering & Motifs| {{ :dm:20_dm2_time_series_matrix_profile_2023_24.pdf | Time Series Motifs}}, {{ :dm:dm2_lab03_motifs.zip | TS_Motifs}} | Guidotti| +
-|08.| 20.03.2024 | 11-13 |C| Time Series Classification | {{ :dm:21_dm2_time_series_classification_2023_24.pdf | Time Series Classification}}, {{ :dm:dm2_lab04_classification.zip | TS_Classification}} | Guidotti| +
-|09.| 25.03.2024 | 9-11 |C| Imbalanced Learning | {{ :dm:22_dm2_imbalanced_learning_2023_24.pdf | Imbalanced Learning}}, {{ :dm:dm2_lab05_imbalance.zip |ImbLearn}} | Guidotti|  +
-|10.| 27.03.2024 | 11-13 |C| Dimensionality Reduction | {{ :dm:23_dm2_dimred_2023_24.pdf Dimensionality Reduction}}, {{ :dm:dm2_lab06_dimred.zip |DimRed}} | Guidotti| +
-|11.| 03.04.2024 | 11-13 |C| Outlier Detection | {{ :dm:24_dm2_anomaly_detection_2023_24.pdf | Outlier Detection}} | Guidotti| +
-|12.| 08.04.2024 | 9-11 |C| Outlier Detection | {{ :dm:24_dm2_anomaly_detection_2023_24.pdf | Outlier Detection}}, {{ :dm:dm2_lab07_outlier_det.zip | OutlierDetection}} | Guidotti| +
-|13.| 10.04.2024 | 11-13 |C| Outlier Detection | {{ :dm:24_dm2_anomaly_detection_2023_24.pdf | Outlier Detection}}, {{ :dm:dm2_lab07_outlier_det.zip | OutlierDetection}} | Guidotti| +
-|14.| 15.04.2024 | 14-16 |C| Gradient Descend, MLE | {{ :dm:25_dm2_gradient_descent_2023_24.pdf | GD}}, {{ :dm:26_dm2_maximum_likelihood_estimation_2023_24.pdf | MLE}} | Guidotti| +
-|15.| 17.04.2024 | 11-13 |C| Odds, LogOdds, Logistic Regression| {{ :dm:27_dm2_odds_2023_24.pdf | Odds}}, {{ :dm:28_dm2_logistic_regression_2023_24.pdf | LogReg}}, {{ :dm:dm2_lab08_logistic_reg.zip | LogReg}} | Guidotti| +
-|16.| 22.04.2024 | 9-11 |C| Support Vector Machine | {{ :dm:29_dm2_svm_2023_24.pdf | SVM}}, {{ :dm:dm2_lab09_svm.zip | SVM}} | Guidotti| +
-|17.| 24.04.2024 | 11-13 |C| Perceptron, Neural Networks| {{ :dm:30_dm2_perceptron_2023_24.pdf | Perceptron}} | Guidotti| +
-|18.| 29.04.2024 | 9-11 |C| Deep Neural Networks | {{ :dm:31_dm2_neural_network_2023_24.pdf | Deep Neural Networks}}, {{ :dm:dm2_lab10_neural_networks.zip | NN}} | Guidotti| +
-|19.| 06.05.2024 | 9-11 |C| CNN, RNN, DL-TS, Ensemble Intro | {{ :dm:31_dm2_neural_network_2023_24.pdf |DNN}}, {{ :dm:21_dm2_time_series_classification_2023_24.pdf | TSC-DNN}}, {{ :dm:32_dm2_ensemble_2023_24.pdf | Ensemble}} | Guidotti| +
-|20.| 08.05.2024 | 11-13 |C| Ensemble, Boosting, Adaboost | {{ :dm:32_dm2_ensemble_2023_24.pdf | Ensemble}}, {{ :dm:dm2_lab11_ensamble.zip | LabEnsemble}} | Guidotti| +
-|21.| 13.05.2024 | 9-11 |C| Ensemble-TS, Gradient Boosting | {{ :dm:33_dm2_gradient_boost_2023_24.pdf | Gradient Boosting Machines}}, {{ :dm:dm2_lab11_ensamble.zip | LabEnsemble}}  | Guidotti| +
-|22.| 15.05.2024 | 11-13 |C| Extreme Gradient Boosting | {{ :dm:33_dm2_gradient_boost_2023_24.pdf | Gradient Boosting Machines}}, {{ :dm:dm2_lab11_ensamble.zip | LabEnsemble}} | Guidotti| +
-|23.| 20.05.2024 | 9-11 |C1| eXplainable Artificial Intelligence | {{ :dm:34_dm2_explainability_2023_24.pdf | XAI}}, {{ :dm:dm2_lab12_xai.zip | LabXAI}} | Guidotti| +
-|24.| 22.05.2024 | 11-13 |C1| eXplainable Artificial Intelligence | {{ :dm:34_dm2_explainability_2023_24.pdf | XAI}}, {{ :dm:dm2_lab12_xai.zip | LabXAI}}  | Guidotti|+
 ====== Exams ====== ====== Exams ======
  
Linea 206: Linea 206:
   - Understanding of the theoretical aspects of the topics addressed during the course. The student may be required to write on formulas or pseudocode. During the explanations, the student can use pen and paper.   - Understanding of the theoretical aspects of the topics addressed during the course. The student may be required to write on formulas or pseudocode. During the explanations, the student can use pen and paper.
   - Understanding of the algorithms illustrated during the course and their practical implementation. You will be asked to perform one or more simple exercises. The text will be shown on the teacher's screen and / or copied to Miro. The student will have to use pen and paper (if online by Miro https://miro.com/ to show how the exercise is solved.   - Understanding of the algorithms illustrated during the course and their practical implementation. You will be asked to perform one or more simple exercises. The text will be shown on the teacher's screen and / or copied to Miro. The student will have to use pen and paper (if online by Miro https://miro.com/ to show how the exercise is solved.
-  - Discussion of the project with questions from the teacher regarding unclear aspects, +  - Discussion of the project with questions from the teacher regarding unclear aspects, questionable steps or choices.
-questionable steps or choices.+
  
 ** Final Mark: ** for 12-credit exam, the final mark will be obtained as the ** Final Mark: ** for 12-credit exam, the final mark will be obtained as the
 average mark of DM1 and DM2. average mark of DM1 and DM2.
 +
 +*** Exams Registration Instructions for DM1***
 +- Use the Google registration form: TBD if you cannot register on Esami on Data Mining for year 2025/2026. 
 +- When the registration closes you will receive a link to the Agenda
 +- Register on the Agenda selecting day and time (do not change you choice or cancel, if you book you want to do the exam)
 +- Submit the project at least 1 week before the day you selected (or within 31/12 to get +0.5 extra mark)
  
 ===== Exam Booking Periods ===== ===== Exam Booking Periods =====
   * Exam portal link: [[https://esami.unipi.it/|here]]   * Exam portal link: [[https://esami.unipi.it/|here]]
-  * 1st Appello: from 09/01/2024 to 31/12/2024 +  * Registration Form: TBD 
-  * 2nd Appello: from 01/02/2024 to 17/02/2024 +  * 1st Appello: from TBD to TBD 
-  * 3rd Appello: from 05/05/2024 to 30/05/2024  +  * 2nd Appello: from TBD to TBD 
-  * 4th Appello: from 02/06/2024 to 27/06/2024  +  * 3rd Appello: from TBD to TBD 
-  * 5th Appello: from 19/06/2024 to 14/07/2024  +  * 4th Appello: from TBD to TBD 
-  * 6th Appello: +  * 5th Appello: from TBD to TBD 
 +  * 6th Appello: from TBD to TBD
    
-===== Exam Booking Agenda ===== 
-When registering for the oral exam please specify in the notes DM1 if you do not want to do DM2 (that is assumed by default). After having booked for DM1 please contact Prof. Pedreschi to agree on the exam date (put Prof. Guidotti and Andrea Fedele in cc). There will be no agenda for DM1. 
  
-  * 1st Appello - DM1: https://agende.unipi.it/yra-ief-dmo, DM2: https://agende.unipi.it/rnm-urj-wsu 
-  * 2nd Appello - DM1: https://agende.unipi.it/yra-ief-dmo, DM2: https://agende.unipi.it/rnm-urj-wsu 
-  * 3rd Appello: - DM1 & DM2: from 04/06/2024 to 13/06/2024 (deliver project by 29/05/2024)  
-  * 4th Appello: - DM1 & DM2: from 02/07/2024 to 11/07/2024 (deliver project by 25/06/2024)  
-  * 5th Appello: - DM1 & DM2: from 22/07/2024 to 25/07/2024 (deliver project by 15/07/2024) 
-  * 6th Appello:  
- 
-**Do not forget to make the evaluation of the course!!!** 
 ===== Exam DM1 ====== ===== Exam DM1 ======
  
Linea 238: Linea 234:
   * An **oral exam**, that includes: (1) discussing the project report; (2) discussing topics presented during the classes, including the theory and practical exercises.    * An **oral exam**, that includes: (1) discussing the project report; (2) discussing topics presented during the classes, including the theory and practical exercises. 
  
-  * A **project**, that consists in exercises requiring the use of data mining tools for analysis of data. Exercises include: data understanding, clustering analysis, pattern mining, and classification (guidelines will be provided for more details). The project has to be performed by min 2, max 3 people. It has to be performed by using Python or any other data mining software. The results of the different tasks must be reported in a unique paper. The total length of this paper must be max 20 pages of text including figures. The paper must be emailed to [[andrea.fedele@phd.unipi.it]] and [[riccardo.guidotti@unipi.it]]. Please, use “[DM1 2023-2024] Project” in the subject.+  * A **project**, that consists in exercises requiring the use of data mining tools for analysis of data. Exercises include: data understanding, clustering analysis, pattern mining, and classification (guidelines will be provided for more details). The project has to be performed by min 2, max 3 people. It has to be performed by using Python or any other data mining software. The results of the different tasks must be reported in a unique paper. The total length of this paper must be max 20 pages of text including figures. The paper must be emailed to [[alessio.cascione@phd.unipi.it]] and [[riccardo.guidotti@unipi.it]]. Please, use “[DM1 2025-2026] Project” in the subject.
    
   * **Dataset**   * **Dataset**
-    - Assigned: 25/09/2023 +    - Assigned: 15/10/2025 
-    - MidTerm Submission: 15/11/2023 (+0.5) (half project required, i.e., Data Understanding & Preparation and Clustering) +    - MidTerm Submission: 15/11/2025 (+0.5) (half project required, i.e., Data Understanding & Preparation and Clustering) 
-    - Final Submission: 31/12/2023 (+0.5) one week before the oral exam (complete project required). +    - Final Submission: 31/12/2025 (+0.5) one week before the oral exam (complete project required). 
-    - Dataset: {{ :dm:std.zip | STD}}+    - Dataset: Download here {{ :dm:dm1_25_26_dataset.zip |}}
  
 ** DM1 Project Guidelines ** ** DM1 Project Guidelines **
-See {{ :dm:dm1_project_guidelines_23_24.pdf | Project Guidelines}}.+See {{ :dm:dm1_project_guidelines_25_26.pdf |}}
  
  
- 
- 
-  
 ===== Exam DM2 ====== ===== Exam DM2 ======
  
Linea 259: Linea 252:
   * An **oral exam**, that includes: (1) discussing the project report; (2) discussing topics presented during the classes, including the theory and practical exercises.    * An **oral exam**, that includes: (1) discussing the project report; (2) discussing topics presented during the classes, including the theory and practical exercises. 
  
-  * A **project**, that consists in exercises requiring the use of data mining tools for analysis of data. Exercises include: imbalanced learning, dimensionality reduction, outlier detection, advanced classification/regression methods, time series analysis/clustering/classification (guidelines will be provided for more details). The project has to be performed by min 1, max 3 people. It has to be performed by using Python or any other data mining software. The results of the different tasks must be reported in a unique paper. The total length of this paper must be max 30 pages of text including figures. The paper must be emailed to [[andrea.fedele@phd.unipi.it]] and [[riccardo.guidotti@unipi.it]]. Please, use “[DM2 2023-2024] Project” in the subject.+  * A **project**, that consists in exercises requiring the use of data mining tools for analysis of data. Exercises include: imbalanced learning, dimensionality reduction, outlier detection, advanced classification/regression methods, time series analysis/clustering/classification (guidelines will be provided for more details). The project has to be performed by min 1, max 3 people. It has to be performed by using Python or any other data mining software. The results of the different tasks must be reported in a unique paper. The total length of this paper must be max 30 pages of text including figures. The paper must be emailed to [[andrea.fedele@phd.unipi.it]] and [[riccardo.guidotti@unipi.it]]. Please, use “[DM2 2024-2025] Project” in the subject.
    
   * **Dataset**   * **Dataset**
-    - Assigned: 19/02/2024 +    - Assigned: 18/02/2026 
-    - MidTerm Submission: 07/05/2024 (Modules 1 and 2 (for TS classification non DL-based models)) +    - MidTerm Submission: 07/05/2026 
-    - Final Submission: one week before the oral exam (complete project required, also with DL-based models for TS classification). +    - Final Submission: one week before the oral exam (complete project required). 
-    - Dataset: [[https://unipiit-my.sharepoint.com/:u:/g/personal/a_fedele7_studenti_unipi_it/EUSyNv8ahD9FrBZ6fiF3gvABcYVLpbo1biIyOGy8AmcO5g?e=ziQtEc|STD]]+    - Dataset: TBD
  
 ** DM2 Project Guidelines ** ** DM2 Project Guidelines **
-See {{ :dm:dm2_project_guidelines_23_24.pdf | Project Guidelines}}.+See TBD.
  
  
Linea 293: Linea 286:
  
 ====== Previous years ===== ====== Previous years =====
 +  * [[dm_ds2024-25]]
 +  * [[dm_ds2023-24]]
   * [[dm.2022-23ds]]   * [[dm.2022-23ds]]
   * [[dm.2021-22ds]]   * [[dm.2021-22ds]]
dm/start.1723120692.txt.gz · Ultima modifica: 08/08/2024 alle 12:38 (16 mesi fa) da Salvatore Ruggieri

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki